Abstract
Physiologically realistic peptidoglycan (PG) fragments, derived from Neisseria gonorrhoeae, were shown previously to dose-dependently suppress food consumption and body weight gain in rats following single intraperitoneal injections. The present study, examining the effects of repeated daily injection of PG, provides additional support to our underlying hypothesis, i.e., that soluble PG fragments contribute to the loss of appetite commonly associated with bacterial infections. An initial intraperitoneal injection of purified, soluble, macromolecular, extensively O-acetylated PG fragments (S-O-PG) (240 micrograms/kg of body weight) decreased overnight food consumption in male Lewis rats (150 g) by approximately 35% relative to animals receiving diluent alone (P < 0.05). However, subsequent daily injections of S-O-PG resulted in progressively smaller effects on food consumption until, by the fourth day, rats were completely nonresponsive (tolerant) to S-O-PG-induced hypophagia. Rats that developed tolerance to the effects of S-O-PG on appetite were also tolerant to three other known hypophagic agents, lipopolysaccharide (LPS), muramyl dipeptide, and interleukin-1, when challenged one day after establishment of S-O-PG tolerance. Similarly, rats developed tolerance to repeated injections of muramyl dipeptide or LPS and were cross-tolerant to S-O-PG when challenged 1 day later. However, 30 days after establishment of S-O-PG tolerance, rats remained nonresponsive to S-O-PG but regained full responsiveness to LPS-mediated hypophagia. Thus, at least two mechanisms of tolerance to S-O-PG hypophagia exist: an early tolerance which is nonspecific and a late tolerance which is specific for S-O-PG. Late, but not early, tolerance to S-O-PG-mediated suppression of appetite was associated with an increase in specific anti-PG antibody activity as measured in an enzyme-linked immunosorbent assay.
Full Text
The Full Text of this article is available as a PDF (214.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berkenbosch F., van Oers J., del Rey A., Tilders F., Besedovsky H. Corticotropin-releasing factor-producing neurons in the rat activated by interleukin-1. Science. 1987 Oct 23;238(4826):524–526. doi: 10.1126/science.2443979. [DOI] [PubMed] [Google Scholar]
- Besedovsky H., del Rey A., Sorkin E., Dinarello C. A. Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science. 1986 Aug 8;233(4764):652–654. doi: 10.1126/science.3014662. [DOI] [PubMed] [Google Scholar]
- Biberstine K. J., Rosenthal R. S. Peptidoglycan fragments decrease food intake and body weight gain in rats. Infect Immun. 1994 Aug;62(8):3276–3281. doi: 10.1128/iai.62.8.3276-3281.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cavaillon J. M., Haeffner-Cavaillon N. Signals involved in interleukin 1 synthesis and release by lipopolysaccharide-stimulated monocytes/macrophages. Cytokine. 1990 Sep;2(5):313–329. doi: 10.1016/1043-4666(90)90061-w. [DOI] [PubMed] [Google Scholar]
- Damais C., Riveau G., Parant M., Gerota J., Chedid L. Production of lymphocyte activating factor in the absence of endogenous pyrogen by rabbit or human leukocytes stimulated by a muramyl dipeptide derivative. Int J Immunopharmacol. 1982;4(5):451–462. doi: 10.1016/0192-0561(82)90020-0. [DOI] [PubMed] [Google Scholar]
- Dinarello C. A., Elin R. J., Chedid L., Wolff S. M. The pyrogenicity of the synthetic adjuvant muramyl dipeptide and two structural analogues. J Infect Dis. 1978 Dec;138(6):760–767. doi: 10.1093/infdis/138.6.760. [DOI] [PubMed] [Google Scholar]
- Dinarello C. A., Krueger J. M. Induction of interleukin 1 by synthetic and naturally occurring muramyl peptides. Fed Proc. 1986 Oct;45(11):2545–2548. [PubMed] [Google Scholar]
- Dinarello C. A. The proinflammatory cytokines interleukin-1 and tumor necrosis factor and treatment of the septic shock syndrome. J Infect Dis. 1991 Jun;163(6):1177–1184. doi: 10.1093/infdis/163.6.1177. [DOI] [PubMed] [Google Scholar]
- Dokter W. H., Dijkstra A. J., Koopmans S. B., Stulp B. K., Keck W., Halie M. R., Vellenga E. G(Anh)MTetra, a natural bacterial cell wall breakdown product, induces interleukin-1 beta and interleukin-6 expression in human monocytes. A study of the molecular mechanisms involved in inflammatory cytokine expression. J Biol Chem. 1994 Feb 11;269(6):4201–4206. [PubMed] [Google Scholar]
- Dripps D. J., Brandhuber B. J., Thompson R. C., Eisenberg S. P. Interleukin-1 (IL-1) receptor antagonist binds to the 80-kDa IL-1 receptor but does not initiate IL-1 signal transduction. J Biol Chem. 1991 Jun 5;266(16):10331–10336. [PubMed] [Google Scholar]
- Ellouz F., Adam A., Ciorbaru R., Lederer E. Minimal structural requirements for adjuvant activity of bacterial peptidoglycan derivatives. Biochem Biophys Res Commun. 1974 Aug 19;59(4):1317–1325. doi: 10.1016/0006-291x(74)90458-6. [DOI] [PubMed] [Google Scholar]
- Fernandez-Botran R. Soluble cytokine receptors: their role in immunoregulation. FASEB J. 1991 Aug;5(11):2567–2574. doi: 10.1096/fasebj.5.11.1868981. [DOI] [PubMed] [Google Scholar]
- Hannum C. H., Wilcox C. J., Arend W. P., Joslin F. G., Dripps D. J., Heimdal P. L., Armes L. G., Sommer A., Eisenberg S. P., Thompson R. C. Interleukin-1 receptor antagonist activity of a human interleukin-1 inhibitor. Nature. 1990 Jan 25;343(6256):336–340. doi: 10.1038/343336a0. [DOI] [PubMed] [Google Scholar]
- Hellerstein M. K., Meydani S. N., Meydani M., Wu K., Dinarello C. A. Interleukin-1-induced anorexia in the rat. Influence of prostaglandins. J Clin Invest. 1989 Jul;84(1):228–235. doi: 10.1172/JCI114145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johannsen L. Biological properties of bacterial peptidoglycan. APMIS. 1993 May;101(5):337–344. doi: 10.1111/j.1699-0463.1993.tb00119.x. [DOI] [PubMed] [Google Scholar]
- Krueger J. M., Pappenheimer J. R., Karnovsky M. L. Sleep-promoting effects of muramyl peptides. Proc Natl Acad Sci U S A. 1982 Oct;79(19):6102–6106. doi: 10.1073/pnas.79.19.6102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langhans W., Harlacher R., Balkowski G., Scharrer E. Comparison of the effects of bacterial lipopolysaccharide and muramyl dipeptide on food intake. Physiol Behav. 1990 May;47(5):805–813. doi: 10.1016/0031-9384(90)90001-k. [DOI] [PubMed] [Google Scholar]
- McCarthy D. O., Kluger M. J., Vander A. J. The role of fever in appetite suppression after endotoxin administration. Am J Clin Nutr. 1984 Aug;40(2):310–316. doi: 10.1093/ajcn/40.2.310. [DOI] [PubMed] [Google Scholar]
- Mengozzi M., Ghezzi P. Defective tolerance to the toxic and metabolic effects of interleukin 1. Endocrinology. 1991 Mar;128(3):1668–1672. doi: 10.1210/endo-128-3-1668. [DOI] [PubMed] [Google Scholar]
- Mrosovsky N., Molony L. A., Conn C. A., Kluger M. J. Anorexic effects of interleukin 1 in the rat. Am J Physiol. 1989 Dec;257(6 Pt 2):R1315–R1321. doi: 10.1152/ajpregu.1989.257.6.R1315. [DOI] [PubMed] [Google Scholar]
- Navarra P., Pozzoli G., Becherucci C., Preziosi P., Grossman A. B., Parente L. Prostaglandin E2 and bacterial lipopolysaccharide stimulate bioactive interleukin-1 release from rat hypothalamic explants. Neuroendocrinology. 1993;57(2):257–261. doi: 10.1159/000126367. [DOI] [PubMed] [Google Scholar]
- Nguyen-Huy H., Nauciel C., Wermuth C. G. Immunochemical study of the peptidoglycan of gram-negative bacteria. Eur J Biochem. 1976 Jun 15;66(1):79–84. doi: 10.1111/j.1432-1033.1976.tb10427.x. [DOI] [PubMed] [Google Scholar]
- Otterness I. G., Golden H. W., Brissette W. H., Seymour P. A., Daumy G. O. Effects of continuously administered murine interleukin-1 alpha: tolerance development and granuloma formation. Infect Immun. 1989 Sep;57(9):2742–2750. doi: 10.1128/iai.57.9.2742-2750.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rahman M. U., Ahmed S., Schumacher H. R., Zeiger A. R. High levels of antipeptidoglycan antibodies in psoriatic and other seronegative arthritides. J Rheumatol. 1990 May;17(5):621–625. [PubMed] [Google Scholar]
- Riveau G., Masek K., Parant M., Chedid L. Central pyrogenic activity of muramyl dipeptide. J Exp Med. 1980 Oct 1;152(4):869–877. doi: 10.1084/jem.152.4.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rivier C., Chizzonite R., Vale W. In the mouse, the activation of the hypothalamic-pituitary-adrenal axis by a lipopolysaccharide (endotoxin) is mediated through interleukin-1. Endocrinology. 1989 Dec;125(6):2800–2805. doi: 10.1210/endo-125-6-2800. [DOI] [PubMed] [Google Scholar]
- Sapolsky R., Rivier C., Yamamoto G., Plotsky P., Vale W. Interleukin-1 stimulates the secretion of hypothalamic corticotropin-releasing factor. Science. 1987 Oct 23;238(4826):522–524. doi: 10.1126/science.2821621. [DOI] [PubMed] [Google Scholar]
- Socher S. H., Friedman A., Martinez D. Recombinant human tumor necrosis factor induces acute reductions in food intake and body weight in mice. J Exp Med. 1988 Jun 1;167(6):1957–1962. doi: 10.1084/jem.167.6.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soszynski D., Kozak W., Szewczenko M. Course of fever response to repeated administration of sublethal doses of lipopolysaccharides, polyinosinic:polycytidylic acid and muramyl dipeptide to rabbits. Experientia. 1991 Jan 15;47(1):43–47. doi: 10.1007/BF02041248. [DOI] [PubMed] [Google Scholar]
- Staber F. G. Diminished response of granulocyte-macrophage colony-stimulating factor (GM-CSF) in mice after sensitisation with bacterial cell-wall components. Exp Hematol. 1980 Jan;8(1):120–133. [PubMed] [Google Scholar]
- Uehara A., Gottschall P. E., Dahl R. R., Arimura A. Interleukin-1 stimulates ACTH release by an indirect action which requires endogenous corticotropin releasing factor. Endocrinology. 1987 Oct;121(4):1580–1582. doi: 10.1210/endo-121-4-1580. [DOI] [PubMed] [Google Scholar]