Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Sep;64(9):3646–3651. doi: 10.1128/iai.64.9.3646-3651.1996

Novel pathogenic mechanism of microbial metalloproteinases: liberation of membrane-anchored molecules in biologically active form exemplified by studies with the human interleukin-6 receptor.

P Vollmer 1, I Walev 1, S Rose-John 1, S Bhakdi 1
PMCID: PMC174276  PMID: 8751912

Abstract

Certain membrane-anchored proteins, including several cytokines and cytokine receptors, can be released into cell supernatants through the action of endogenous membrane-bound metalloproteinases. The shed molecules are then able to fulfill various biological functions; for example, soluble interleukin-6 receptor (sIL-6R) can bind to bystander cells, rendering these cells sensitive to the action of IL-6. Using IL-6R as a model substrate, we report that the metalloproteinase from Serratia marcescens mimics the action of the endogenous shedding proteinase. Treatment of human monocytes with the bacterial protease led to a rapid release of sIL-6R into the supernatant. This effect was inhibitable with TAPI [N-(D,L-[2-(hydroxyaminocarbonyl)methyl]-4-methylpentanoyl) L-3-(2' naphthyl)-alanyl-L-alanine, 2-aminoethyl amide], a specific inhibitor of the membrane-bound intrinsic metalloproteinase, but not with other conventional proteinase inhibitors. sIL-6R-liberating activity was also detected in culture supernatants of Staphylococcus aureus, Pseudomonas aeruginosa, and Listeria monocytogenes, organisms that are known to produce metalloproteinases. sIL-6R released through the action of S. marcescens metalloproteinase retained biological activity and rendered IL-6-unresponsive human hepatoma cells sensitive to stimulation with IL-6. This was shown by Northern (RNA) blot detection of haptoglobin mRNA and by quantitative measurements of de novo-synthesized haptoglobin in cell supernatants. Analysis of immunoprecipitated, radiolabeled sIL-6R revealed that the bacterial protease cleaved IL-6R at a site distinct from that utilized by the endogenous protease. These studies show that membrane-anchored proteins can be released in active form through cleavage at multiple sites, and they uncover a novel mechanism via which microbial proteases possibly provoke long-range biological effects in the host organism.

Full Text

The Full Text of this article is available as a PDF (738.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumann U. Crystal structure of the 50 kDa metallo protease from Serratia marcescens. J Mol Biol. 1994 Sep 23;242(3):244–251. doi: 10.1006/jmbi.1994.1576. [DOI] [PubMed] [Google Scholar]
  2. Bazil V. Physiological enzymatic cleavage of leukocyte membrane molecules. Immunol Today. 1995 Mar;16(3):135–140. doi: 10.1016/0167-5699(95)80130-8. [DOI] [PubMed] [Google Scholar]
  3. Bhakdi S., Grimminger F., Suttorp N., Walmrath D., Seeger W. Proteinaceous bacterial toxins and pathogenesis of sepsis syndrome and septic shock: the unknown connection. Med Microbiol Immunol. 1994 Jul;183(3):119–144. doi: 10.1007/BF00196048. [DOI] [PubMed] [Google Scholar]
  4. Crowe P. D., Walter B. N., Mohler K. M., Otten-Evans C., Black R. A., Ware C. F. A metalloprotease inhibitor blocks shedding of the 80-kD TNF receptor and TNF processing in T lymphocytes. J Exp Med. 1995 Mar 1;181(3):1205–1210. doi: 10.1084/jem.181.3.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Denholm E. M., Wolber F. M. A simple method for the purification of human peripheral blood monocytes. A substitute for Sepracell-MN. J Immunol Methods. 1991 Nov 22;144(2):247–251. doi: 10.1016/0022-1759(91)90092-t. [DOI] [PubMed] [Google Scholar]
  6. Ehlers M. R., Riordan J. F. Membrane proteins with soluble counterparts: role of proteolysis in the release of transmembrane proteins. Biochemistry. 1991 Oct 22;30(42):10065–10074. doi: 10.1021/bi00106a001. [DOI] [PubMed] [Google Scholar]
  7. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  8. Gearing A. J., Beckett P., Christodoulou M., Churchill M., Clements J., Davidson A. H., Drummond A. H., Galloway W. A., Gilbert R., Gordon J. L. Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature. 1994 Aug 18;370(6490):555–557. doi: 10.1038/370555a0. [DOI] [PubMed] [Google Scholar]
  9. Häse C. C., Finkelstein R. A. Bacterial extracellular zinc-containing metalloproteases. Microbiol Rev. 1993 Dec;57(4):823–837. doi: 10.1128/mr.57.4.823-837.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Katsuya Y., Sato M., Katsube Y., Matsuura Y., Tomoda K. Small-angle x-ray scattering study of metal ion-induced conformational changes in Serratia protease. J Biol Chem. 1992 Jun 25;267(18):12668–12672. [PubMed] [Google Scholar]
  11. Kayagaki N., Kawasaki A., Ebata T., Ohmoto H., Ikeda S., Inoue S., Yoshino K., Okumura K., Yagita H. Metalloproteinase-mediated release of human Fas ligand. J Exp Med. 1995 Dec 1;182(6):1777–1783. doi: 10.1084/jem.182.6.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mackiewicz A., Schooltink H., Heinrich P. C., Rose-John S. Complex of soluble human IL-6-receptor/IL-6 up-regulates expression of acute-phase proteins. J Immunol. 1992 Sep 15;149(6):2021–2027. [PubMed] [Google Scholar]
  13. Maeda H., Akaike T., Sakata Y., Maruo K. Role of bradykinin in microbial infection: enhancement of septicemia by microbial proteases and kinin. Agents Actions Suppl. 1993;42:159–165. doi: 10.1007/978-3-0348-7397-0_13. [DOI] [PubMed] [Google Scholar]
  14. Massagué J., Pandiella A. Membrane-anchored growth factors. Annu Rev Biochem. 1993;62:515–541. doi: 10.1146/annurev.bi.62.070193.002503. [DOI] [PubMed] [Google Scholar]
  15. McGeehan G. M., Becherer J. D., Bast R. C., Jr, Boyer C. M., Champion B., Connolly K. M., Conway J. G., Furdon P., Karp S., Kidao S. Regulation of tumour necrosis factor-alpha processing by a metalloproteinase inhibitor. Nature. 1994 Aug 18;370(6490):558–561. doi: 10.1038/370558a0. [DOI] [PubMed] [Google Scholar]
  16. Mohler K. M., Sleath P. R., Fitzner J. N., Cerretti D. P., Alderson M., Kerwar S. S., Torrance D. S., Otten-Evans C., Greenstreet T., Weerawarna K. Protection against a lethal dose of endotoxin by an inhibitor of tumour necrosis factor processing. Nature. 1994 Jul 21;370(6486):218–220. doi: 10.1038/370218a0. [DOI] [PubMed] [Google Scholar]
  17. Müllberg J., Durie F. H., Otten-Evans C., Alderson M. R., Rose-John S., Cosman D., Black R. A., Mohler K. M. A metalloprotease inhibitor blocks shedding of the IL-6 receptor and the p60 TNF receptor. J Immunol. 1995 Dec 1;155(11):5198–5205. [PubMed] [Google Scholar]
  18. Müllberg J., Oberthür W., Lottspeich F., Mehl E., Dittrich E., Graeve L., Heinrich P. C., Rose-John S. The soluble human IL-6 receptor. Mutational characterization of the proteolytic cleavage site. J Immunol. 1994 May 15;152(10):4958–4968. [PubMed] [Google Scholar]
  19. Müllberg J., Schooltink H., Stoyan T., Günther M., Graeve L., Buse G., Mackiewicz A., Heinrich P. C., Rose-John S. The soluble interleukin-6 receptor is generated by shedding. Eur J Immunol. 1993 Feb;23(2):473–480. doi: 10.1002/eji.1830230226. [DOI] [PubMed] [Google Scholar]
  20. Rose-John S., Heinrich P. C. Soluble receptors for cytokines and growth factors: generation and biological function. Biochem J. 1994 Jun 1;300(Pt 2):281–290. doi: 10.1042/bj3000281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rose-John S., Rincke G., Marks F. The induction of ornithine decarboxylase by the tumor promoter TPA is controlled at the post-transcriptional level in murine Swiss 3T3 fibroblasts. Biochem Biophys Res Commun. 1987 Aug 31;147(1):219–225. doi: 10.1016/s0006-291x(87)80109-2. [DOI] [PubMed] [Google Scholar]
  22. Salvati A. L., Lahm A., Paonessa G., Ciliberto G., Toniatti C. Interleukin-6 (IL-6) antagonism by soluble IL-6 receptor alpha mutated in the predicted gp130-binding interface. J Biol Chem. 1995 May 19;270(20):12242–12249. doi: 10.1074/jbc.270.20.12242. [DOI] [PubMed] [Google Scholar]
  23. Stoyan T., Michaelis U., Schooltink H., Van Dam M., Rudolph R., Heinrich P. C., Rose-John S. Recombinant soluble human interleukin-6 receptor. Expression in Escherichia coli, renaturation and purification. Eur J Biochem. 1993 Aug 15;216(1):239–245. doi: 10.1111/j.1432-1033.1993.tb18138.x. [DOI] [PubMed] [Google Scholar]
  24. Tamura Y., Suzuki S., Sawada T. Role of elastase as a virulence factor in experimental Pseudomonas aeruginosa infection in mice. Microb Pathog. 1992 Mar;12(3):237–244. doi: 10.1016/0882-4010(92)90058-v. [DOI] [PubMed] [Google Scholar]
  25. Titball R. W. Bacterial phospholipases C. Microbiol Rev. 1993 Jun;57(2):347–366. doi: 10.1128/mr.57.2.347-366.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yawata H., Yasukawa K., Natsuka S., Murakami M., Yamasaki K., Hibi M., Taga T., Kishimoto T. Structure-function analysis of human IL-6 receptor: dissociation of amino acid residues required for IL-6-binding and for IL-6 signal transduction through gp130. EMBO J. 1993 Apr;12(4):1705–1712. doi: 10.1002/j.1460-2075.1993.tb05815.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES