Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Sep;64(9):3682–3687. doi: 10.1128/iai.64.9.3682-3687.1996

Inhibition of human peripheral blood mononuclear cell proliferative response by glycosphingolipids from metacestodes of Echinococcus multilocularis.

F Persat 1, C Vincent 1, D Schmitt 1, M Mojon 1
PMCID: PMC174281  PMID: 8751917

Abstract

The effect on human peripheral blood mononuclear cells (PBMCs) of neutral glycosphingolipids extracted from metacestodes of the parasite Echinococcus multilocularis was investigated. Neutral glycosphingolipids inhibited [3H]thymidine uptake by human PBMCs upon stimulation by mitogens such as phytohemagglutinin A and pokeweed mitogen or by allogeneic Burkitt B cells. This effect was dose dependent and was related to a decrease in interleukin 2 (IL-2) synthesis, the expression of IL-2 receptors (CD25) being unmodified. Addition of exogenous recombinant IL-2 restored the cell proliferation. Partial inhibition of immunoglobulin G (IgG), IgA, and IgM synthesis was observed in the supernatant of cell culture in association with the inhibitory effect. Identification of active subfractions contained in the neutral glycosphingolipid fraction was also studied in relation to cell viability. The free ceramide fraction had an inhibitory effect, in part related to cell lysis, particularly at high concentration, while the monogalactosylceramides had a paradoxical effect: as an activator at low concentrations and as an inhibitor at high concentrations, with limited cell survival. The immunogenic neutral glycosphingolipids containing at least two carbohydrate residues, all having a structure based on Gal beta 1-->6Gal, were inhibitors of PBMC proliferation and showed good cell survival. These results suggest that parasite neutral glycosphingolipids may play an immunologically relevant role in alveolar hydatid disease.

Full Text

The Full Text of this article is available as a PDF (270.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avila J. L., Rojas M. Elevated cerebroside antibody levels in human visceral and cutaneous leishmaniasis, Trypanosoma rangeli infection, and chronic Chagas' disease. Am J Trop Med Hyg. 1990 Jul;43(1):52–60. doi: 10.4269/ajtmh.1990.43.52. [DOI] [PubMed] [Google Scholar]
  2. Bielawska A., Linardic C. M., Hannun Y. A. Ceramide-mediated biology. Determination of structural and stereospecific requirements through the use of N-acyl-phenylaminoalcohol analogs. J Biol Chem. 1992 Sep 15;267(26):18493–18497. [PubMed] [Google Scholar]
  3. Bouhours J. F., Guignard H. Free ceramide, sphingomyelin, and glucosylceramide of isolated rat intestinal cells. J Lipid Res. 1979 Sep;20(7):879–907. [PubMed] [Google Scholar]
  4. Dennis R. D., Baumeister S., Geyer R., Peter-Katalinic J., Hartmann R., Egge H., Geyer E., Wiegandt H. Glycosphingolipids in cestodes. Chemical structures of ceramide monosaccharide, disaccharide, trisaccharide and tetrasaccharide from metacestodes of the fox tapeworm, Taenia crassiceps (Cestoda: Cyclophyllidea). Eur J Biochem. 1992 Aug 1;207(3):1053–1062. doi: 10.1111/j.1432-1033.1992.tb17142.x. [DOI] [PubMed] [Google Scholar]
  5. Dobrowsky R. T., Hannun Y. A. Ceramide stimulates a cytosolic protein phosphatase. J Biol Chem. 1992 Mar 15;267(8):5048–5051. [PubMed] [Google Scholar]
  6. Dyatlovitskaya E. V., Bergelson L. D. Glycosphingolipids and antitumor immunity. Biochim Biophys Acta. 1987 Jul 8;907(2):125–143. doi: 10.1016/0304-419x(87)90002-3. [DOI] [PubMed] [Google Scholar]
  7. Felding-Habermann B., Igarashi Y., Fenderson B. A., Park L. S., Radin N. S., Inokuchi J., Strassmann G., Handa K., Hakomori S. A ceramide analogue inhibits T cell proliferative response through inhibition of glycosphingolipid synthesis and enhancement of N,N-dimethylsphingosine synthesis. Biochemistry. 1990 Jul 3;29(26):6314–6322. doi: 10.1021/bi00478a028. [DOI] [PubMed] [Google Scholar]
  8. Ferguson M. A., Homans S. W. Parasite glycoconjugates: towards the exploitation of their structure. Parasite Immunol. 1988 Sep;10(5):465–479. doi: 10.1111/j.1365-3024.1988.tb00236.x. [DOI] [PubMed] [Google Scholar]
  9. Giorgio S., Jasiulionis M. G., Straus A. H., Takahashi H. K., Barbiéri C. L. Inhibition of mouse lymphocyte proliferative response by glycosphingolipids from Leishmania (L.) amazonensis. Exp Parasitol. 1992 Aug;75(1):119–125. doi: 10.1016/0014-4894(92)90127-v. [DOI] [PubMed] [Google Scholar]
  10. Glaudemans C. P. Seven structurally different murine monoclonal galactan-specific antibodies show identity in their galactosyl-binding subsite arrangements. Mol Immunol. 1987 Apr;24(4):371–377. doi: 10.1016/0161-5890(87)90179-9. [DOI] [PubMed] [Google Scholar]
  11. Gottstein B., Felleisen R. Protective immune mechanisms against the metacestode of Echinococcus multilocularis. Parasitol Today. 1995 Sep;11(9):320–326. doi: 10.1016/0169-4758(95)80184-7. [DOI] [PubMed] [Google Scholar]
  12. Gottstein B., Wunderlin E., Tanner I. Echinococcus multilocularis: parasite-specific humoral and cellular immune response subsets in mouse strains susceptible (AKR, C57B1/6J) or 'resistant' (C57B1/10) to secondary alveolar echinococcosis. Clin Exp Immunol. 1994 May;96(2):245–252. doi: 10.1111/j.1365-2249.1994.tb06549.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hakomori S. Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions. J Biol Chem. 1990 Nov 5;265(31):18713–18716. [PubMed] [Google Scholar]
  14. Hmama Z., Lina G., Vincent C., Wijdenes J., Normier G., Binz H., Revillard J. P. Monocyte cytokine secretion induced by chemically-defined derivatives of Klebsiella pneumoniae. Clin Exp Immunol. 1992 Jul;89(1):104–109. doi: 10.1111/j.1365-2249.1992.tb06886.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kawakami Y., Nakamura K., Kojima H., Suzuki M., Inagaki F., Suzuki A., Sonoki S., Uchida A., Murata Y., Tamai Y. A novel fucosylated glycosphingolipid with a Gal beta 1-4Glc beta 1-3Gal sequence in plerocercoids of the parasite, Spirometra erinacei. J Biochem. 1993 Nov;114(5):677–683. doi: 10.1093/oxfordjournals.jbchem.a124236. [DOI] [PubMed] [Google Scholar]
  16. Kizaki T., Ishige M., Kobayashi S., Bingyan W., Kumagai M., Day N. K., Good R. A., Onoé K. Suppression of T-cell proliferation by CD8+ T cells induced in the presence of protoscolices of Echinococcus multilocularis in vitro. Infect Immun. 1993 Feb;61(2):525–533. doi: 10.1128/iai.61.2.525-533.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kundu S. K. Thin-layer chromatography of neutral glycosphingolipids and gangliosides. Methods Enzymol. 1981;72:185–204. doi: 10.1016/s0076-6879(81)72012-3. [DOI] [PubMed] [Google Scholar]
  18. Marcus D. M., Schwarting G. A. Immunochemical properties of glycolipids and phospholipids. Adv Immunol. 1976;23:203–240. [PubMed] [Google Scholar]
  19. Matsubara T., Hayashi A. Structural studies on glycolipid of shellfish. III. Novel glycolipids from Turbo cornutus. J Biochem. 1981 Feb;89(2):645–650. doi: 10.1093/oxfordjournals.jbchem.a133241. [DOI] [PubMed] [Google Scholar]
  20. Merrill A. H., Jr, Hannun Y. A., Bell R. M. Introduction: sphingolipids and their metabolites in cell regulation. Adv Lipid Res. 1993;25:1–24. [PubMed] [Google Scholar]
  21. Naoi M., Lee Y. C., Roseman S. Rapid and sensitive determination of sphingosine bases and sphingolipids with fluorescamine. Anal Biochem. 1974 Apr;58(2):571–577. doi: 10.1016/0003-2697(74)90226-7. [DOI] [PubMed] [Google Scholar]
  22. Nicod L., Bresson-Hadni S., Vuitton D. A., Emery I., Gottstein B., Auer H., Lenys D. Specific cellular and humoral immune responses induced by different antigen preparations of Echinococcus multilocularis metacestodes in patients with alveolar echinococcosis. Parasite. 1994 Sep;1(3):261–270. doi: 10.1051/parasite/1994013261. [DOI] [PubMed] [Google Scholar]
  23. Nishimura K., Suzuki A., Kino H. Sphingolipids of a cestode Metroliasthes coturnix. Biochim Biophys Acta. 1991 Nov 5;1086(2):141–150. doi: 10.1016/0005-2760(91)90001-x. [DOI] [PubMed] [Google Scholar]
  24. Persat F., Bouhours J. F., Mojon M., Petavy A. F. Analysis of the monohexosylceramide fraction of Echinococcus multilocularis metacestodes. Mol Biochem Parasitol. 1990 Jun;41(1):1–6. doi: 10.1016/0166-6851(90)90090-9. [DOI] [PubMed] [Google Scholar]
  25. Persat F., Bouhours J. F., Mojon M., Petavy A. F. Glycosphingolipids of Echinococcus multilocularis metacestodes. Mol Biochem Parasitol. 1990 Jan 1;38(1):97–103. doi: 10.1016/0166-6851(90)90209-5. [DOI] [PubMed] [Google Scholar]
  26. Persat F., Bouhours J. F., Mojon M., Petavy A. F. Glycosphingolipids with Gal beta 1----6Gal sequences in metacestodes of the parasite Echinococcus multilocularis. J Biol Chem. 1992 May 5;267(13):8764–8769. [PubMed] [Google Scholar]
  27. Persat F., Bouhours J. F., Petavy A. F., Mojon M. Free ceramides of Echinococcus multilocularis metacestodes. Biochim Biophys Acta. 1995 Apr 6;1255(3):280–284. doi: 10.1016/0005-2760(94)00242-q. [DOI] [PubMed] [Google Scholar]
  28. Persat F., Vincent C., Mojon M., Petavy A. F. Detection of antibodies against glycolipids of Echinococcus multilocularis metacestodes in sera of patients with alveolar hydatid disease. Parasite Immunol. 1991 Jul;13(4):379–389. doi: 10.1111/j.1365-3024.1991.tb00291.x. [DOI] [PubMed] [Google Scholar]
  29. Rakha N. K., Dixon J. B., Carter S. D., Craig P. S., Jenkins P., Folkard S. Echinococcus multilocularis antigens modify accessory cell function of macrophages. Immunology. 1991 Dec;74(4):652–656. [PMC free article] [PubMed] [Google Scholar]
  30. Saito T., Hakomori S. I. Quantitative isolation of total glycosphingolipids from animal cells. J Lipid Res. 1971 Mar;12(2):257–259. [PubMed] [Google Scholar]
  31. Schwartz R. H. A cell culture model for T lymphocyte clonal anergy. Science. 1990 Jun 15;248(4961):1349–1356. doi: 10.1126/science.2113314. [DOI] [PubMed] [Google Scholar]
  32. Straus A. H., Levery S. B., Jasiulionis M. G., Salyan M. E., Steele S. J., Travassos L. R., Hakomori S., Takahashi H. K. Stage-specific glycosphingolipids from amastigote forms of Leishmania (L.) amazonensis. Immunogenicity and role in parasite binding and invasion of macrophages. J Biol Chem. 1993 Jun 25;268(18):13723–13730. [PubMed] [Google Scholar]
  33. Ueno K., Ando S., Yu R. K. Gangliosides of human, cat, and rabbit spinal cords and cord myelin. J Lipid Res. 1978 Sep;19(7):863–871. [PubMed] [Google Scholar]
  34. Vincent C., Revillard J. P. Sandwich-type ELISA for free and bound secretory component in human biological fluids. J Immunol Methods. 1988 Feb 10;106(2):153–160. doi: 10.1016/0022-1759(88)90191-3. [DOI] [PubMed] [Google Scholar]
  35. Weiss J. B., Magnani J. L., Strand M. Identification of Schistosoma mansoni glycolipids that share immunogenic carbohydrate epitopes with glycoproteins. J Immunol. 1986 Jun 1;136(11):4275–4282. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES