Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Sep;64(9):3728–3735. doi: 10.1128/iai.64.9.3728-3735.1996

Elimination of the listeriolysin O-directed immune response by conservative alteration of the immunodominant listeriolysin O amino acid 91 to 99 epitope.

H G Bouwer 1, M Moors 1, D J Hinrichs 1
PMCID: PMC174286  PMID: 8751922

Abstract

A major H2-Kd-presented epitope for antilisterial cytotoxic T lymphocytes (CTLs) is the nanomer peptide which corresponds to the amino acid 91 to 99 (aa91-99) sequence from listeriolysin O (LLO). Although the LLO sequence contains at least five additional nanomer peptides which also satisfy the H2-Kd binding motif, aa91-99 is the only LLO-derived target peptide that is recognized by antilisterial CTLs following infection of BALB/c mice with Listeria monocytogenes. In order to investigate further the immunodominance of the LLO aa91-99 epitope following endogenous processing of LLO, we introduced a point mutation in hly (the gene for LLO) which results in a conservative Y-to-F substitution for the anchor residue at position 2 within the aa91-99 sequence. This "92F" L. monocytogenes mutant produces biologically active LLO and is phenotypically indistinct from wild-type L. monocytogenes in terms of intracellular growth in vitro and virulence in vivo. BALB/c mice actively immunized with the 92F L. monocytogenes mutant are protected against challenge with wild-type L. monocytogenes. Antilisterial CTLs from mice immunized with the 92F mutant lyse targets infected with L. monocytogenes; however, these CTLs do not lyse target cells pulsed with either the LLO aa91-99 peptide, other LLO-derived peptides which satisfy the H2-Kd binding motif, or a peptide corresponding to the LLO aa91-92F-99 sequence. Target cells pulsed with the LLO aa91-92F-99 peptide are, however, lysed by wild-type LLO aa91-99-specific cytotoxic cells. Thus, a conservative amino acid change in the first anchor residue of the immunodominant aa91-99 sequence of LLO eliminates the induction of the cytotoxic cell response to this epitope as well as to any of the other candidate LLO-derived peptides which fit the H2-Kd binding motif. The lack of anti-LLO-specific CTLs following immunization with the 92F mutant does not appear, however, to influence the protective antilisterial immune response.

Full Text

The Full Text of this article is available as a PDF (319.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldridge J. R., Barry R. A., Hinrichs D. J. Expression of systemic protection and delayed-type hypersensitivity to Listeria monocytogenes is mediated by different T-cell subsets. Infect Immun. 1990 Mar;58(3):654–658. doi: 10.1128/iai.58.3.654-658.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barry R. A., Bouwer H. G., Portnoy D. A., Hinrichs D. J. Pathogenicity and immunogenicity of Listeria monocytogenes small-plaque mutants defective for intracellular growth and cell-to-cell spread. Infect Immun. 1992 Apr;60(4):1625–1632. doi: 10.1128/iai.60.4.1625-1632.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barry R. A., Hinrichs D. J. Enhanced adoptive transfer of immunity to Listeria monocytogenes after in vitro culture of murine spleen cells with concanavalin A. Infect Immun. 1982 Feb;35(2):560–565. doi: 10.1128/iai.35.2.560-565.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berche P., Gaillard J. L., Richard S. Invasiveness and intracellular growth of Listeria monocytogenes. Infection. 1988;16 (Suppl 2):S145–S148. doi: 10.1007/BF01639738. [DOI] [PubMed] [Google Scholar]
  5. Bielecki J., Youngman P., Connelly P., Portnoy D. A. Bacillus subtilis expressing a haemolysin gene from Listeria monocytogenes can grow in mammalian cells. Nature. 1990 May 10;345(6271):175–176. doi: 10.1038/345175a0. [DOI] [PubMed] [Google Scholar]
  6. Bishop D. K., Hinrichs D. J. Adoptive transfer of immunity to Listeria monocytogenes. The influence of in vitro stimulation on lymphocyte subset requirements. J Immunol. 1987 Sep 15;139(6):2005–2009. [PubMed] [Google Scholar]
  7. Bouwer H. G., Gibbins B. L., Jones S., Hinrichs D. J. Antilisterial immunity includes specificity to listeriolysin O (LLO) and non-LLO-derived determinants. Infect Immun. 1994 Mar;62(3):1039–1045. doi: 10.1128/iai.62.3.1039-1045.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bouwer H. G., Lindahl K. F., Baldridge J. R., Wagner C. R., Barry R. A., Hinrichs D. J. An H2-T MHC class Ib molecule presents Listeria monocytogenes-derived antigen to immune CD8+ cytotoxic T cells. J Immunol. 1994 Jun 1;152(11):5352–5360. [PubMed] [Google Scholar]
  9. Bouwer H. G., Nelson C. S., Gibbins B. L., Portnoy D. A., Hinrichs D. J. Listeriolysin O is a target of the immune response to Listeria monocytogenes. J Exp Med. 1992 Jun 1;175(6):1467–1471. doi: 10.1084/jem.175.6.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brodsky F. M., Guagliardi L. E. The cell biology of antigen processing and presentation. Annu Rev Immunol. 1991;9:707–744. doi: 10.1146/annurev.iy.09.040191.003423. [DOI] [PubMed] [Google Scholar]
  11. Falk K., Rötzschke O., Stevanović S., Jung G., Rammensee H. G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991 May 23;351(6324):290–296. doi: 10.1038/351290a0. [DOI] [PubMed] [Google Scholar]
  12. Goldberg A. L., Rock K. L. Proteolysis, proteasomes and antigen presentation. Nature. 1992 Jun 4;357(6377):375–379. doi: 10.1038/357375a0. [DOI] [PubMed] [Google Scholar]
  13. Harty J. T., Bevan M. J. CD8+ T cells specific for a single nonamer epitope of Listeria monocytogenes are protective in vivo. J Exp Med. 1992 Jun 1;175(6):1531–1538. doi: 10.1084/jem.175.6.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harty J. T., Pamer E. G. CD8 T lymphocytes specific for the secreted p60 antigen protect against Listeria monocytogenes infection. J Immunol. 1995 May 1;154(9):4642–4650. [PubMed] [Google Scholar]
  15. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  16. Jones S., Portnoy D. A. Characterization of Listeria monocytogenes pathogenesis in a strain expressing perfringolysin O in place of listeriolysin O. Infect Immun. 1994 Dec;62(12):5608–5613. doi: 10.1128/iai.62.12.5608-5613.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kageyama S., Tsomides T. J., Sykulev Y., Eisen H. N. Variations in the number of peptide-MHC class I complexes required to activate cytotoxic T cell responses. J Immunol. 1995 Jan 15;154(2):567–576. [PubMed] [Google Scholar]
  18. Malarkannan S., Goth S., Buchholz D. R., Shastri N. The role of MHC class I molecules in the generation of endogenous peptide/MHC complexes. J Immunol. 1995 Jan 15;154(2):585–598. [PubMed] [Google Scholar]
  19. Mengaud J., Vicente M. F., Chenevert J., Pereira J. M., Geoffroy C., Gicquel-Sanzey B., Baquero F., Perez-Diaz J. C., Cossart P. Expression in Escherichia coli and sequence analysis of the listeriolysin O determinant of Listeria monocytogenes. Infect Immun. 1988 Apr;56(4):766–772. doi: 10.1128/iai.56.4.766-772.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Monaco J. J. A molecular model of MHC class-I-restricted antigen processing. Immunol Today. 1992 May;13(5):173–179. doi: 10.1016/0167-5699(92)90122-N. [DOI] [PubMed] [Google Scholar]
  21. Nikcevich K. M., Kopielski D., Finnegan A. Interference with the binding of a naturally processed peptide to class II alters the immunodominance of T cell epitopes in vivo. J Immunol. 1994 Aug 1;153(3):1015–1026. [PubMed] [Google Scholar]
  22. Pamer E. G. Direct sequence identification and kinetic analysis of an MHC class I-restricted Listeria monocytogenes CTL epitope. J Immunol. 1994 Jan 15;152(2):686–694. [PubMed] [Google Scholar]
  23. Pamer E. G., Harty J. T., Bevan M. J. Precise prediction of a dominant class I MHC-restricted epitope of Listeria monocytogenes. Nature. 1991 Oct 31;353(6347):852–855. doi: 10.1038/353852a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Portnoy D. A., Jacks P. S., Hinrichs D. J. Role of hemolysin for the intracellular growth of Listeria monocytogenes. J Exp Med. 1988 Apr 1;167(4):1459–1471. doi: 10.1084/jem.167.4.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Portnoy D. A., Jones S. The cell biology of Listeria monocytogenes infection (escape from a vacuole). Ann N Y Acad Sci. 1994 Aug 15;730:15–25. doi: 10.1111/j.1749-6632.1994.tb44235.x. [DOI] [PubMed] [Google Scholar]
  26. Rammensee H. G., Falk K., Rötzschke O. Peptides naturally presented by MHC class I molecules. Annu Rev Immunol. 1993;11:213–244. doi: 10.1146/annurev.iy.11.040193.001241. [DOI] [PubMed] [Google Scholar]
  27. Wipke B. T., Jameson S. C., Bevan M. J., Pamer E. G. Variable binding affinities of listeriolysin O peptides for the H-2Kd class I molecule. Eur J Immunol. 1993 Aug;23(8):2005–2010. doi: 10.1002/eji.1830230842. [DOI] [PubMed] [Google Scholar]
  28. Wirth R., An F. Y., Clewell D. B. Highly efficient protoplast transformation system for Streptococcus faecalis and a new Escherichia coli-S. faecalis shuttle vector. J Bacteriol. 1986 Mar;165(3):831–836. doi: 10.1128/jb.165.3.831-836.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES