Abstract
We have characterized 11 isolates of Vibrio cholerae O139 Bengal with regard to properties deemed to be relevant for development of a vaccine against O139 cholera. For most strains two colony variants, A and B, which are nonhemolytic and hemolytic, respectively, were detected on blood agar. The A and B variants were associated with high- and low-level production of soluble hemagglutinin-protease, respectively. However, on Luria-Bertani agar both types formed opaque colonies, which has been shown to be associated with capsule formation. Interestingly, under the stationary tube-shaken flask culture conditions in yeast extract-peptone water medium which were used to stimulate the production of cholera toxin (CT) and toxin-coregulated pili, B variants constitutively produced CT and TcpA, two ToxR-regulated proteins, at 28 and 37 degrees C, whereas the production of these proteins by A variants was downregulated at the higher temperature. One of the strains, 4260B, having a well-exposed O antigen and capsule and the capacity to produce large amounts of TcpA, CT, and mannose-sensitive hemagglutinin pili but minimal amounts of the proteolytic soluble hemagglutinin, was selected to produce antibacterial antisera and as a challenge strain in protection studies using the rabbit ileal loop model. Rabbit antisera to live, heat-killed, or formalin-killed O139 vibrios or to purified O139 lipopoly-saccharide (LPS) as well as monoclonal antibodies (MAbs) to O139 LPS agglutinated all O139 isolates. However, when A and B variants of strain 4260 were tested for sensitivity to vibriocidal activity of these antibody preparations, only the B variant was killed. All of the antisera against live or killed O139 vibrios conferred passive protection against fluid accumulation induced by the challenge strain. The protective effects of the antisera were correlated to anti-LPS antibody titers rather than to titers against whole bacteria that had been grown for toxin-coregulated pilus expression. This protection was considerably higher than that conferred by antisera to classical, EI Tor, or recombinantly produced (classical) CT or CTB. Furthermore, MAbs to O139 LPS and CTB-CT exhibited a strong synergistic protection against O139 challenge irrespective of the level of sensitivity of challenge strains to O139 LPS MAbs in vibriocidal assays in vitro.
Full Text
The Full Text of this article is available as a PDF (357.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Attridge S. R., Voss E., Manning P. A. The role of toxin-coregulated pili in the pathogenesis of Vibrio cholerae O1 El Tor. Microb Pathog. 1993 Dec;15(6):421–431. doi: 10.1006/mpat.1993.1091. [DOI] [PubMed] [Google Scholar]
- Bhattacharya M. K., Bhattacharya S. K., Garg S., Saha P. K., Dutta D., Nair G. B., Deb B. C., Das K. P. Outbreak of Vibrio cholerae non-O1 in India and Bangladesh. Lancet. 1993 May 22;341(8856):1346–1347. doi: 10.1016/0140-6736(93)90855-b. [DOI] [PubMed] [Google Scholar]
- Bik E. M., Bunschoten A. E., Gouw R. D., Mooi F. R. Genesis of the novel epidemic Vibrio cholerae O139 strain: evidence for horizontal transfer of genes involved in polysaccharide synthesis. EMBO J. 1995 Jan 16;14(2):209–216. doi: 10.1002/j.1460-2075.1995.tb06993.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calia K. E., Murtagh M., Ferraro M. J., Calderwood S. B. Comparison of Vibrio cholerae O139 with V. cholerae O1 classical and El Tor biotypes. Infect Immun. 1994 Apr;62(4):1504–1506. doi: 10.1128/iai.62.4.1504-1506.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Comstock L. E., Johnson J. A., Michalski J. M., Morris J. G., Jr, Kaper J. B. Cloning and sequence of a region encoding a surface polysaccharide of Vibrio cholerae O139 and characterization of the insertion site in the chromosome of Vibrio cholerae O1. Mol Microbiol. 1996 Feb;19(4):815–826. doi: 10.1046/j.1365-2958.1996.407928.x. [DOI] [PubMed] [Google Scholar]
- Dubey R. S., Lindblad M., Holmgren J. Purification of El Tor cholera enterotoxins and comparisons with classical toxin. J Gen Microbiol. 1990 Sep;136(9):1839–1847. doi: 10.1099/00221287-136-9-1839. [DOI] [PubMed] [Google Scholar]
- Finkelstein R. A., Atthasampunna P., Chulasamaya M., Charunmethee P. Pathogenesis of experimental cholera: biologic ativities of purified procholeragen A. J Immunol. 1966 Mar;96(3):440–449. [PubMed] [Google Scholar]
- Finkelstein R. A., Boesman-Finkelstein M., Chang Y., Häse C. C. Vibrio cholerae hemagglutinin/protease, colonial variation, virulence, and detachment. Infect Immun. 1992 Feb;60(2):472–478. doi: 10.1128/iai.60.2.472-478.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glass R. I., Becker S., Huq M. I., Stoll B. J., Khan M. U., Merson M. H., Lee J. V., Black R. E. Endemic cholera in rural Bangladesh, 1966-1980. Am J Epidemiol. 1982 Dec;116(6):959–970. doi: 10.1093/oxfordjournals.aje.a113498. [DOI] [PubMed] [Google Scholar]
- Guerrant R. L., Brunton L. L., Schnaitman T. C., Rebhun L. I., Gilman A. G. Cyclic adenosine monophosphate and alteration of Chinese hamster ovary cell morphology: a rapid, sensitive in vitro assay for the enterotoxins of Vibrio cholerae and Escherichia coli. Infect Immun. 1974 Aug;10(2):320–327. doi: 10.1128/iai.10.2.320-327.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall R. H., Khambaty F. M., Kothary M. H., Keasler S. P., Tall B. D. Vibrio cholerae non-O1 serogroup associated with cholera gravis genetically and physiologically resembles O1 E1 Tor cholera strains. Infect Immun. 1994 Sep;62(9):3859–3863. doi: 10.1128/iai.62.9.3859-3863.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higa N., Honma Y., Albert M. J., Iwanaga M. Characterization of Vibrio cholerae O139 synonym Bengal isolated from patients with cholera-like disease in Bangladesh. Microbiol Immunol. 1993;37(12):971–974. doi: 10.1111/j.1348-0421.1993.tb01731.x. [DOI] [PubMed] [Google Scholar]
- Hisatsune K., Kondo S., Isshiki Y., Iguchi T., Kawamata Y., Shimada T. O-antigenic lipopolysaccharide of Vibrio cholerae O139 Bengal, a new epidemic strain for recent cholera in the Indian subcontinent. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1309–1315. doi: 10.1006/bbrc.1993.2395. [DOI] [PubMed] [Google Scholar]
- Jertborn M., Svennerholm A. M., Holmgren J. Saliva, breast milk, and serum antibody responses as indirect measures of intestinal immunity after oral cholera vaccination or natural disease. J Clin Microbiol. 1986 Aug;24(2):203–209. doi: 10.1128/jcm.24.2.203-209.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson J. A., Salles C. A., Panigrahi P., Albert M. J., Wright A. C., Johnson R. J., Morris J. G., Jr Vibrio cholerae O139 synonym bengal is closely related to Vibrio cholerae El Tor but has important differences. Infect Immun. 1994 May;62(5):2108–2110. doi: 10.1128/iai.62.5.2108-2110.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jonson G., Holmgren J., Svennerholm A. M. Analysis of expression of toxin-coregulated pili in classical and El Tor Vibrio cholerae O1 in vitro and in vivo. Infect Immun. 1992 Oct;60(10):4278–4284. doi: 10.1128/iai.60.10.4278-4284.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jonson G., Holmgren J., Svennerholm A. M. Epitope differences in toxin-coregulated pili produced by classical and El Tor Vibrio cholerae O1. Microb Pathog. 1991 Sep;11(3):179–188. doi: 10.1016/0882-4010(91)90048-f. [DOI] [PubMed] [Google Scholar]
- Jonson G., Holmgren J., Svennerholm A. M. Identification of a mannose-binding pilus on Vibrio cholerae El Tor. Microb Pathog. 1991 Dec;11(6):433–441. doi: 10.1016/0882-4010(91)90039-d. [DOI] [PubMed] [Google Scholar]
- Jonson G., Svennerholm A. M., Holmgren J. Vibrio cholerae expresses cell surface antigens during intestinal infection which are not expressed during in vitro culture. Infect Immun. 1989 Jun;57(6):1809–1815. doi: 10.1128/iai.57.6.1809-1815.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kido N., Ohta M., Kato N. Detection of lipopolysaccharides by ethidium bromide staining after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Bacteriol. 1990 Feb;172(2):1145–1147. doi: 10.1128/jb.172.2.1145-1147.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lebens M., Holmgren J. Structure and arrangement of the cholera toxin genes in Vibrio cholerae O139. FEMS Microbiol Lett. 1994 Apr 1;117(2):197–202. doi: 10.1111/j.1574-6968.1994.tb06764.x. [DOI] [PubMed] [Google Scholar]
- Lindholm L., Holmgren J., Wikström M., Karlsson U., Andersson K., Lycke N. Monoclonal antibodies to cholera toxin with special reference to cross-reactions with Escherichia coli heat-labile enterotoxin. Infect Immun. 1983 May;40(2):570–576. doi: 10.1128/iai.40.2.570-576.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osek J., Svennerholm A. M., Holmgren J. Protection against Vibrio cholerae El Tor infection by specific antibodies against mannose-binding hemagglutinin pili. Infect Immun. 1992 Nov;60(11):4961–4964. doi: 10.1128/iai.60.11.4961-4964.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rhine J. A., Taylor R. K. TcpA pilin sequences and colonization requirements for O1 and O139 vibrio cholerae. Mol Microbiol. 1994 Sep;13(6):1013–1020. doi: 10.1111/j.1365-2958.1994.tb00492.x. [DOI] [PubMed] [Google Scholar]
- Rice E. W., Johnson C. J., Clark R. M., Fox K. R., Reasoner D. J., Dunnigan M. E., Panigrahi P., Johnson J. A., Morris J. G., Jr Chlorine and survival of "rugose" Vibrio cholerae. Lancet. 1992 Sep 19;340(8821):740–740. doi: 10.1016/0140-6736(92)92289-r. [DOI] [PubMed] [Google Scholar]
- Siddique A. K., Zaman K., Baqui A. H., Akram K., Mutsuddy P., Eusof A., Haider K., Islam S., Sack R. B. Cholera epidemics in Bangladesh: 1985-1991. J Diarrhoeal Dis Res. 1992 Jun;10(2):79–86. [PubMed] [Google Scholar]
- Stroeher U. H., Jedani K. E., Dredge B. K., Morona R., Brown M. H., Karageorgos L. E., Albert M. J., Manning P. A. Genetic rearrangements in the rfb regions of Vibrio cholerae O1 and O139. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10374–10378. doi: 10.1073/pnas.92.22.10374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Svennerholm A. M., Holmgren J. Synergistic protective effect in rabbits of immunization with Vibrio cholerae lipopolysaccharide and toxin/toxoid. Infect Immun. 1976 Mar;13(3):735–740. doi: 10.1128/iai.13.3.735-740.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Svennerholm A. M., Strömberg G. J., Holmgren J. Purification of Vibrio cholerae soluble hemagglutinin and development of enzyme-linked immunosorbent assays for antigen and antibody quantitations. Infect Immun. 1983 Jul;41(1):237–243. doi: 10.1128/iai.41.1.237-243.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Voss E., Attridge S. R. In vitro production of toxin-coregulated pili by Vibrio cholerae El Tor. Microb Pathog. 1993 Oct;15(4):255–268. doi: 10.1006/mpat.1993.1076. [DOI] [PubMed] [Google Scholar]
- Waldor M. K., Colwell R., Mekalanos J. J. The Vibrio cholerae O139 serogroup antigen includes an O-antigen capsule and lipopolysaccharide virulence determinants. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11388–11392. doi: 10.1073/pnas.91.24.11388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waldor M. K., Mekalanos J. J. Emergence of a new cholera pandemic: molecular analysis of virulence determinants in Vibrio cholerae O139 and development of a live vaccine prototype. J Infect Dis. 1994 Aug;170(2):278–283. doi: 10.1093/infdis/170.2.278. [DOI] [PubMed] [Google Scholar]
- Waldor M. K., Mekalanos J. J. ToxR regulates virulence gene expression in non-O1 strains of Vibrio cholerae that cause epidemic cholera. Infect Immun. 1994 Jan;62(1):72–78. doi: 10.1128/iai.62.1.72-78.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weintraub A., Widmalm G., Jansson P. E., Jansson M., Hultenby K., Albert M. J. Vibrio cholerae O139 Bengal possesses a capsular polysaccharide which may confer increased virulence. Microb Pathog. 1994 Mar;16(3):235–241. doi: 10.1006/mpat.1994.1024. [DOI] [PubMed] [Google Scholar]
- al-Hendy A., Toivanen P., Skurnik M. Rapid method for isolation and staining of bacterial lipopolysaccharide. Microbiol Immunol. 1991;35(4):331–333. doi: 10.1111/j.1348-0421.1991.tb01562.x. [DOI] [PubMed] [Google Scholar]
- de StGroth S. F., Scheidegger D. Production of monoclonal antibodies: strategy and tactics. J Immunol Methods. 1980;35(1-2):1–21. doi: 10.1016/0022-1759(80)90146-5. [DOI] [PubMed] [Google Scholar]