Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Sep;64(9):3818–3826. doi: 10.1128/iai.64.9.3818-3826.1996

Group B streptococcal beta-hemolysin expression is associated with injury of lung epithelial cells.

V Nizet 1, R L Gibson 1, E Y Chi 1, P E Framson 1, M Hulse 1, C E Rubens 1
PMCID: PMC174298  PMID: 8751934

Abstract

Group B streptococci (GBS) are the leading cause of serious bacterial infection in newborns. Early-onset disease is heralded by pneumonia and lung injury, and the lung may serve as a portal of entry for GBS into the bloodstream. To examine a potential role for GBS beta-hemolysin in lung epithelial injury, five wild-type strains varying in beta-hemolysin expression were chosen, along with five nonhemolytic (NH) and five hyperhemolytic (HH) variants of these strains derived by chemical or transposon mutagenesis. Monolayers of A549 alveolar epithelial cells were exposed to log-phase GBS or stabilized hemolysin extracts of GBS cultures, and cellular injury was assessed by lactate dehydrogenase (LDH) release and trypan blue nuclear staining. Whereas NH strains produced no detectable injury beyond baseline (medium alone), hemolysin-producing strains induced LDH release from A549 cells in direct correlation to their ability to lyse sheep erythrocytes. HH strains were also associated with marked increases in trypan blue nuclear staining of A549 monolayers. The extent of LDH release produced by HH strains was significantly reduced in the presence of dipalmitoyl phosphatidylcholine, a known inhibitor of hemolysin and the major phospholipid component of human surfactant. Electron microscopic studies of A549 cell monolayers exposed to HH GBS mutants revealed global loss of microvillus architecture, disruption of cytoplasmic and nuclear membranes, and marked swelling of the cytoplasm and organelles. We conclude that GBS hemolysin expression correlates with lung epithelial cell injury and may be important in the initial pathogenesis of early-onset disease, particularly when pulmonary surfactant is deficient.

Full Text

The Full Text of this article is available as a PDF (4.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ablow R. C., Driscoll S. G., Effmann E. L., Gross I., Jolles C. J., Uauy R., Warshaw J. B. A comparison of early-onset group B steptococcal neonatal infection and the respiratory-distress syndrome of the newborn. N Engl J Med. 1976 Jan 8;294(2):65–70. doi: 10.1056/NEJM197601082940201. [DOI] [PubMed] [Google Scholar]
  2. Alper M. D., Ames B. N. Positive selection of mutants with deletions of the gal-chl region of the Salmonella chromosome as a screening procedure for mutagens that cause deletions. J Bacteriol. 1975 Jan;121(1):259–266. doi: 10.1128/jb.121.1.259-266.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anthony B. F., Okada D. M. The emergence of group B streptococci in infections of the newborn infant. Annu Rev Med. 1977;28:355–369. doi: 10.1146/annurev.me.28.020177.002035. [DOI] [PubMed] [Google Scholar]
  4. Bhakdi S., Tranum-Jensen J. Alpha-toxin of Staphylococcus aureus. Microbiol Rev. 1991 Dec;55(4):733–751. doi: 10.1128/mr.55.4.733-751.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bhakdi S., Tranum-Jensen J., Sziegoleit A. Mechanism of membrane damage by streptolysin-O. Infect Immun. 1985 Jan;47(1):52–60. doi: 10.1128/iai.47.1.52-60.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chi E., Mehl T., Nunn D., Lory S. Interaction of Pseudomonas aeruginosa with A549 pneumocyte cells. Infect Immun. 1991 Mar;59(3):822–828. doi: 10.1128/iai.59.3.822-828.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cochi S. L., Feldman R. A. Estimating national incidence of group B streptococcal disease: the effect of adjusting for birth weight. Pediatr Infect Dis. 1983 Sep-Oct;2(5):414–415. [PubMed] [Google Scholar]
  8. Conrads G., Podbielski A., Lütticken R. Molecular cloning and nucleotide sequence of the group B streptococcal hemolysin. Zentralbl Bakteriol. 1991 Jun;275(2):179–184. doi: 10.1016/s0934-8840(11)80064-2. [DOI] [PubMed] [Google Scholar]
  9. Ermert L., Rousseau S., Schütte H., Birkemeyer R. G., Grimminger F., Bhakdi S., Duncker H. R., Seeger W. Induction of severe vascular leakage by low doses of Escherichia coli hemolysin in perfused rabbit lungs. Lab Invest. 1992 Mar;66(3):362–369. [PubMed] [Google Scholar]
  10. Facklam R. R., Padula J. F., Thacker L. G., Wortham E. C., Sconyers B. J. Presumptive identification of group A, B, and D streptococci. Appl Microbiol. 1974 Jan;27(1):107–113. doi: 10.1128/am.27.1.107-113.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Farley M. M., Harvey R. C., Stull T., Smith J. D., Schuchat A., Wenger J. D., Stephens D. S. A population-based assessment of invasive disease due to group B Streptococcus in nonpregnant adults. N Engl J Med. 1993 Jun 24;328(25):1807–1811. doi: 10.1056/NEJM199306243282503. [DOI] [PubMed] [Google Scholar]
  12. Gibson R. L., Lee M. K., Soderland C., Chi E. Y., Rubens C. E. Group B streptococci invade endothelial cells: type III capsular polysaccharide attenuates invasion. Infect Immun. 1993 Feb;61(2):478–485. doi: 10.1128/iai.61.2.478-485.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Griffiths B. B., Rhee H. Effects of haemolysins of groups A and B streptococci on cardiovascular system. Microbios. 1992;69(278):17–27. [PubMed] [Google Scholar]
  14. Hemming V. G., McCloskey D. W., Hill H. R. Pneumonia in the neonate associated with group B streptococcal septicemia. Am J Dis Child. 1976 Nov;130(11):1231–1233. doi: 10.1001/archpedi.1976.02120120065011. [DOI] [PubMed] [Google Scholar]
  15. Herting E., Jarstrand C., Rasool O., Curstedt T., Sun B., Robertson B. Experimental neonatal group B streptococcal pneumonia: effect of a modified porcine surfactant on bacterial proliferation in ventilated near-term rabbits. Pediatr Res. 1994 Dec;36(6):784–791. doi: 10.1203/00006450-199412000-00017. [DOI] [PubMed] [Google Scholar]
  16. Jett B. D., Jensen H. G., Nordquist R. E., Gilmore M. S. Contribution of the pAD1-encoded cytolysin to the severity of experimental Enterococcus faecalis endophthalmitis. Infect Immun. 1992 Jun;60(6):2445–2452. doi: 10.1128/iai.60.6.2445-2452.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kuypers J. M., Heggen L. M., Rubens C. E. Molecular analysis of a region of the group B streptococcus chromosome involved in type III capsule expression. Infect Immun. 1989 Oct;57(10):3058–3065. doi: 10.1128/iai.57.10.3058-3065.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Madoff L. C., Michel J. L., Kasper D. L. A monoclonal antibody identifies a protective C-protein alpha-antigen epitope in group B streptococci. Infect Immun. 1991 Jan;59(1):204–210. doi: 10.1128/iai.59.1.204-210.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Marchlewicz B. A., Duncan J. L. Lysis of erythrocytes by a hemolysin produced by a group B Streptococcus sp. Infect Immun. 1981 Dec;34(3):787–794. doi: 10.1128/iai.34.3.787-794.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Marchlewicz B. A., Duncan J. L. Properties of a hemolysin produced by group B streptococci. Infect Immun. 1980 Dec;30(3):805–813. doi: 10.1128/iai.30.3.805-813.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Merritt K., Jacobs N. J. Improved medium for detecting pigment production by group B streptococci. J Clin Microbiol. 1976 Oct;4(4):379–380. doi: 10.1128/jcm.4.4.379-380.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Noble M. A., Bent J. M., West A. B. Detection and identification of group B streptococci by use of pigment production. J Clin Pathol. 1983 Mar;36(3):350–352. doi: 10.1136/jcp.36.3.350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Papadimitriou J. C., Drachenberg C. B., Shin M. L., Trump B. F. Ultrastructural studies of complement mediated cell death: a biological reaction model to plasma membrane injury. Virchows Arch. 1994;424(6):677–685. doi: 10.1007/BF00195784. [DOI] [PubMed] [Google Scholar]
  24. Platt M. W. In vivo hemolytic activity of group B streptococcus is dependent on erythrocyte-bacteria contact and independent of a carrier molecule. Curr Microbiol. 1995 Jul;31(1):5–9. doi: 10.1007/BF00294625. [DOI] [PubMed] [Google Scholar]
  25. Rooney S. A. The surfactant system and lung phospholipid biochemistry. Am Rev Respir Dis. 1985 Mar;131(3):439–460. doi: 10.1164/arrd.1985.131.3.439. [DOI] [PubMed] [Google Scholar]
  26. Rubens C. E., Heggen L. M. Tn916 delta E: a Tn916 transposon derivative expressing erythromycin resistance. Plasmid. 1988 Sep;20(2):137–142. doi: 10.1016/0147-619x(88)90016-9. [DOI] [PubMed] [Google Scholar]
  27. Rubens C. E., Raff H. V., Jackson J. C., Chi E. Y., Bielitzki J. T., Hillier S. L. Pathophysiology and histopathology of group B streptococcal sepsis in Macaca nemestrina primates induced after intraamniotic inoculation: evidence for bacterial cellular invasion. J Infect Dis. 1991 Aug;164(2):320–330. doi: 10.1093/infdis/164.2.320. [DOI] [PubMed] [Google Scholar]
  28. Rubens C. E., Smith S., Hulse M., Chi E. Y., van Belle G. Respiratory epithelial cell invasion by group B streptococci. Infect Immun. 1992 Dec;60(12):5157–5163. doi: 10.1128/iai.60.12.5157-5163.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rubens C. E., Wessels M. R., Heggen L. M., Kasper D. L. Transposon mutagenesis of type III group B Streptococcus: correlation of capsule expression with virulence. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7208–7212. doi: 10.1073/pnas.84.20.7208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schwartz D. O., Beckwith J. R. Mutagens which cause deletions in Escherichia coli. Genetics. 1969 Feb;61(2):371–376. doi: 10.1093/genetics/61.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Seeger W., Birkemeyer R. G., Ermert L., Suttorp N., Bhakdi S., Duncker H. R. Staphylococcal alpha-toxin-induced vascular leakage in isolated perfused rabbit lungs. Lab Invest. 1990 Sep;63(3):341–349. [PubMed] [Google Scholar]
  32. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  33. Tapsall J. W., Phillips E. A. The hemolytic and cytolytic activity of group B streptococcal hemolysin and its possible role in early onset group B streptococcal disease. Pathology. 1991 Apr;23(2):139–144. doi: 10.3109/00313029109060813. [DOI] [PubMed] [Google Scholar]
  34. Tapsall J. W. Pigment production by Lancefield-group-B streptococci (Streptococcus agalactiae). J Med Microbiol. 1986 Feb;21(1):75–81. doi: 10.1099/00222615-21-1-75. [DOI] [PubMed] [Google Scholar]
  35. Tapsall J. W. Relationship between pigment production and haemolysin formation by Lancefield group B streptococci. J Med Microbiol. 1987 Aug;24(1):83–87. doi: 10.1099/00222615-24-1-83. [DOI] [PubMed] [Google Scholar]
  36. Tascón R. I., Vázquez-Boland J. A., Gutiérrez-Martín C. B., Rodríguez-Barbosa I., Rodríguez-Ferri E. F. The RTX haemolysins ApxI and ApxII are major virulence factors of the swine pathogen Actinobacillus pleuropneumoniae: evidence from mutational analysis. Mol Microbiol. 1994 Oct;14(2):207–216. doi: 10.1111/j.1365-2958.1994.tb01282.x. [DOI] [PubMed] [Google Scholar]
  37. Thelestam M., Blomqvist L. Staphylococcal alpha toxin--recent advances. Toxicon. 1988;26(1):55–65. doi: 10.1016/0041-0101(88)90137-7. [DOI] [PubMed] [Google Scholar]
  38. Weiser J. N., Rubens C. E. Transposon mutagenesis of group B streptococcus beta-hemolysin biosynthesis. Infect Immun. 1987 Sep;55(9):2314–2316. doi: 10.1128/iai.55.9.2314-2316.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wilkinson H. W. Nontypable group B streptococci isolated from human sources. J Clin Microbiol. 1977 Aug;6(2):183–184. doi: 10.1128/jcm.6.2.183-184.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES