Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Sep;64(9):3853–3857. doi: 10.1128/iai.64.9.3853-3857.1996

The alpha-hemolysin of Streptococcus gordonii is hydrogen peroxide.

J P Barnard 1, M W Stinson 1
PMCID: PMC174302  PMID: 8751938

Abstract

The alpha-hemolysin of viridans group streptococci, which causes greening of intact erythrocytes, is a potential virulence factor as well as an important criterion for the laboratory identification of these bacteria; however, it has never been purified and characterized. The alpha-hemolysin of Streptococcus gordonii CH1 caused characteristic shifts in the A403, A430, A578, and A630 of sheep hemoglobin. A spectrophotometric assay was developed and used to monitor purification of alpha-hemolysin during extraction in organic solvents and separation by reverse-phase high-performance liquid chromatography (HPLC). The alpha-hemolysin was identical to hydrogen peroxide with respect to its effects on erythrocyte hemoglobin, oxygen-dependent synthesis by streptococci, insensitivity to proteases, inactivation by catalase, differential solubility, failure to adsorb to ion-exchange chromatography resins, and retention time on a reverse-phase HPLC column. The amount of hydrogen peroxide present in HPLC-fractionated spent culture medium was sufficient to account for all alpha-hemolytic activity observed.

Full Text

The Full Text of this article is available as a PDF (217.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anders R. F., Hogg D. M., Jago G. R. Formation of hydrogen peroxide by group N streptococci and its effect on their growth and metabolism. Appl Microbiol. 1970 Apr;19(4):608–612. doi: 10.1128/am.19.4.608-612.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Asikainen S., Alaluusua S. Bacteriology of dental infections. Eur Heart J. 1993 Dec;14 (Suppl K):43–50. [PubMed] [Google Scholar]
  3. Bhakdi S., Roth M., Sziegoleit A., Tranum-Jensen J. Isolation and identification of two hemolytic forms of streptolysin-O. Infect Immun. 1984 Nov;46(2):394–400. doi: 10.1128/iai.46.2.394-400.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bronk S. F., Gores G. J. Acidosis protects against lethal oxidative injury of liver sinusoidal endothelial cells. Hepatology. 1991 Jul;14(1):150–157. doi: 10.1002/hep.1840140125. [DOI] [PubMed] [Google Scholar]
  5. Childs R. E., Bardsley W. G. The steady-state kinetics of peroxidase with 2,2'-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochem J. 1975 Jan;145(1):93–103. doi: 10.1042/bj1450093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DiGuiseppi J., Fridovich I. Oxygen toxicity in Streptococcus sanguis. The relative importance of superoxide and hydroxyl radicals. J Biol Chem. 1982 Apr 25;257(8):4046–4051. [PubMed] [Google Scholar]
  7. Duane P. G., Rubins J. B., Weisel H. R., Janoff E. N. Identification of hydrogen peroxide as a Streptococcus pneumoniae toxin for rat alveolar epithelial cells. Infect Immun. 1993 Oct;61(10):4392–4397. doi: 10.1128/iai.61.10.4392-4397.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dubreuil D., Bisaillon J. G., Beaudet R. Inhibition of Neisseria gonorrhoeae growth due to hydrogen peroxide production by urogenital streptococci. Microbios. 1984;39(157-158):159–167. [PubMed] [Google Scholar]
  9. Fukui K., Kato K., Kodama T., Ohta H., Shimamoto T., Shimono T. Kinetic study of a change in intracellular ATP level associated with aerobic catabolism of ethanol by Streptococcus mutans. J Bacteriol. 1988 Oct;170(10):4589–4593. doi: 10.1128/jb.170.10.4589-4593.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. García-Mendoza A., Liébana J., Castillo A. M., de la Higuera A., Piédrola G. Evaluation of the capacity of oral streptococci to produce hydrogen peroxide. J Med Microbiol. 1993 Dec;39(6):434–439. doi: 10.1099/00222615-39-6-434. [DOI] [PubMed] [Google Scholar]
  11. Higuchi M., Shimada M., Yamamoto Y., Hayashi T., Koga T., Kamio Y. Identification of two distinct NADH oxidases corresponding to H2O2-forming oxidase and H2O-forming oxidase induced in Streptococcus mutans. J Gen Microbiol. 1993 Oct;139(10):2343–2351. doi: 10.1099/00221287-139-10-2343. [DOI] [PubMed] [Google Scholar]
  12. Holmberg K., Hallander H. O. Production of bactericidal concentrations of hydrogen peroxide by Streptococcus sanguis. Arch Oral Biol. 1973 Mar;18(3):423–434. doi: 10.1016/0003-9969(73)90167-2. [DOI] [PubMed] [Google Scholar]
  13. LeBien T. W., Bromel M. C. Antibacterial properties of a peroxidogenic strain of Streptococcus mitior (mitis). Can J Microbiol. 1975 Jan;21(1):101–103. doi: 10.1139/m75-015. [DOI] [PubMed] [Google Scholar]
  14. Link E. M. The mechanism of pH-dependent hydrogen peroxide cytotoxicity in vitro. Arch Biochem Biophys. 1988 Sep;265(2):362–372. doi: 10.1016/0003-9861(88)90139-7. [DOI] [PubMed] [Google Scholar]
  15. Loesche W. J. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 1986 Dec;50(4):353–380. doi: 10.1128/mr.50.4.353-380.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McLeod J. W., Gordon J. Production of Hydrogen Peroxide by Bacteria. Biochem J. 1922;16(4):499–506. doi: 10.1042/bj0160499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Paton J. C., Andrew P. W., Boulnois G. J., Mitchell T. J. Molecular analysis of the pathogenicity of Streptococcus pneumoniae: the role of pneumococcal proteins. Annu Rev Microbiol. 1993;47:89–115. doi: 10.1146/annurev.mi.47.100193.000513. [DOI] [PubMed] [Google Scholar]
  18. Rodeheaver D. P., Schnellmann R. G. Extracellular acidosis ameliorates metabolic-inhibitor-induced and potentiates oxidant-induced cell death in renal proximal tubules. J Pharmacol Exp Ther. 1993 Jun;265(3):1355–1360. [PubMed] [Google Scholar]
  19. Rogers A. H., Zilm P. S., Pfenning A. L., Gully N. J. Some aspects of protease production by a strain of Streptococcus sanguis. Oral Microbiol Immunol. 1990 Apr;5(2):72–76. doi: 10.1111/j.1399-302x.1990.tb00230.x. [DOI] [PubMed] [Google Scholar]
  20. Sherman J. M. THE STREPTOCOCCI. Bacteriol Rev. 1937 Dec;1(1):3–97. doi: 10.1128/br.1.1.3-97.1937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shindler J. S., Childs R. E., Bardsley W. G. Peroxidase from human cervical mucus. The isolation and characterisation. Eur J Biochem. 1976 Jun 1;65(2):325–331. doi: 10.1111/j.1432-1033.1976.tb10345.x. [DOI] [PubMed] [Google Scholar]
  22. Simon R. H., Scoggin C. H., Patterson D. Hydrogen peroxide causes the fatal injury to human fibroblasts exposed to oxygen radicals. J Biol Chem. 1981 Jul 25;256(14):7181–7186. [PubMed] [Google Scholar]
  23. Straus D. C. Protease production by Streptococcus sanguis associated with subacute bacterial endocarditis. Infect Immun. 1982 Dec;38(3):1037–1045. doi: 10.1128/iai.38.3.1037-1045.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sussman J. I., Baron E. J., Tenenbaum M. J., Kaplan M. H., Greenspan J., Facklam R. R., Tyburski M. B., Goldman M. A., Kanzer B. F., Pizzarello R. A. Viridans streptococcal endocarditis: clinical, microbiological, and echocardiographic correlations. J Infect Dis. 1986 Oct;154(4):597–603. doi: 10.1093/infdis/154.4.597. [DOI] [PubMed] [Google Scholar]
  25. Tenovuo J., Larjava H. The protective effect of peroxidase and thiocyanate against hydrogen peroxide toxicity assessed by the uptake of [3H]-thymidine by human gingival fibroblasts cultured in vitro. Arch Oral Biol. 1984;29(6):445–451. doi: 10.1016/0003-9969(84)90025-6. [DOI] [PubMed] [Google Scholar]
  26. Terleckyj B., Willett N. P., Shockman G. D. Growth of several cariogenic strains of oral streptococci in a chemically defined medium. Infect Immun. 1975 Apr;11(4):649–655. doi: 10.1128/iai.11.4.649-655.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Thibodeau E. A., O'Sullivan D. M. Salivary mutans streptococci and incidence of caries in preschool children. Caries Res. 1995;29(2):148–153. doi: 10.1159/000262057. [DOI] [PubMed] [Google Scholar]
  28. Thomas E. L., Pera K. A. Oxygen metabolism of Streptococcus mutans: uptake of oxygen and release of superoxide and hydrogen peroxide. J Bacteriol. 1983 Jun;154(3):1236–1244. doi: 10.1128/jb.154.3.1236-1244.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vernazza T. R., Melville T. H. Inhibitory activity of Streptococcus mitis against oral bacteria. Microbios. 1979;26(104):95–101. [PubMed] [Google Scholar]
  30. Weinberger I., Rotenberg Z., Zacharovitch D., Fuchs J., Davidson E., Agmon J. Native valve infective endocarditis in the 1970s versus the 1980s: underlying cardiac lesions and infecting organisms. Clin Cardiol. 1990 Feb;13(2):94–98. doi: 10.1002/clc.4960130206. [DOI] [PubMed] [Google Scholar]
  31. Whiley R. A., Beighton D. Emended descriptions and recognition of Streptococcus constellatus, Streptococcus intermedius, and Streptococcus anginosus as distinct species. Int J Syst Bacteriol. 1991 Jan;41(1):1–5. doi: 10.1099/00207713-41-1-1. [DOI] [PubMed] [Google Scholar]
  32. Willcox M. D., Drucker D. B. Partial characterisation of the inhibitory substances produced by Streptococcus oralis and related species. Microbios. 1988;55(224-225):135–145. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES