Abstract
Trypanosoma cruzi expresses a developmentally regulated trans-sialidase implicated in the pathogenesis of Chagas' disease. On inhabitation of the extracellular milieu of cultured cells by infective trypomastigotes, the enzyme is restricted to a small (20 to 30%) population of parasites. The biological significance of trans-sialidase expression on this subset, termed TS+, and not on the majority (70 to 80%) of morphologically similar trypanosomes, named TS-, is unknown. To determine the roles of the TS+ and TS- subsets in T. cruzi invasion, we prepared pure populations of TS- and TS+ trypanosomes using magnetic beads coated with a monoclonal antibody specific for the tandem repeat unit of the trans-sialidase C terminus. After removal of nonadherent TS- trypomastigotes, the TS+ trypomastigotes were isolated from the beads by specific elusion with a synthetic peptide epitope of the trans-sialidase monoclonal antibody. Confirmation of TS+ and TS- phenotypes was obtained by immunofluorescence, immunoblotting, and sialidase or sialyl transferase activity measurements. The TS+ trypanosomes were highly invasive, as they attached to, penetrated, and thrived in cultured mammalian cells much more efficiently than did unfractionated parasites. The critical role of the trans-sialidase in invasion was underscored by the observation that infection was neutralized by human antibodies to transsialidase. What's more, the TS- parasites, in sharp contrast to their TS+ counterparts, were extremely inefficient in invading epithelial cells and fibroblasts. Further, introduction of small amounts of exogenous trans-sialidase into suspensions of nonpenetrating TS- parasites converted them to a highly invasive phenotype indistinguishable from that of the TS+ population. Rescue of the invasive phenotype was specific for the T. cruzi enzyme, for it didn't happen with bacterial and viral sialidases. The in vitro results were confirmed in the murine model of Chagas' disease, as TS- trypomastigotes were relatively avirulent while TS+ trypomastigotes were more virulent than unfractionated parasites.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bjerke T., Nielsen S., Helgestad J., Nielsen B. W., Schiøtz P. O. Purification of human blood basophils by negative selection using immunomagnetic beads. J Immunol Methods. 1993 Jan 4;157(1-2):49–56. doi: 10.1016/0022-1759(93)90069-j. [DOI] [PubMed] [Google Scholar]
- Burleigh B. A., Andrews N. W. The mechanisms of Trypanosoma cruzi invasion of mammalian cells. Annu Rev Microbiol. 1995;49:175–200. doi: 10.1146/annurev.mi.49.100195.001135. [DOI] [PubMed] [Google Scholar]
- Cavallesco R., Pereira M. E. Antibody to Trypanosoma cruzi neuraminidase enhances infection in vitro and identifies a subpopulation of trypomastigotes. J Immunol. 1988 Jan 15;140(2):617–625. [PubMed] [Google Scholar]
- Chuenkova M., Pereira M. E. Trypanosoma cruzi trans-sialidase: enhancement of virulence in a murine model of Chagas' disease. J Exp Med. 1995 May 1;181(5):1693–1703. doi: 10.1084/jem.181.5.1693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geng J. G., Bevilacqua M. P., Moore K. L., McIntyre T. M., Prescott S. M., Kim J. M., Bliss G. A., Zimmerman G. A., McEver R. P. Rapid neutrophil adhesion to activated endothelium mediated by GMP-140. Nature. 1990 Feb 22;343(6260):757–760. doi: 10.1038/343757a0. [DOI] [PubMed] [Google Scholar]
- Grabel L. B., Rosen S. D., Martin G. R. Teratocarcinoma stem cells have a cell surface carbohydrate-binding component implicated in cell-cell adhesion. Cell. 1979 Jul;17(3):477–484. doi: 10.1016/0092-8674(79)90255-1. [DOI] [PubMed] [Google Scholar]
- Herrera E. M., Ming M., Ortega-Barria E., Pereira M. E. Mediation of Trypanosoma cruzi invasion by heparan sulfate receptors on host cells and penetrin counter-receptors on the trypanosomes. Mol Biochem Parasitol. 1994 May;65(1):73–83. doi: 10.1016/0166-6851(94)90116-3. [DOI] [PubMed] [Google Scholar]
- Jackson C. J., Garbett P. K., Nissen B., Schrieber L. Binding of human endothelium to Ulex europaeus I-coated Dynabeads: application to the isolation of microvascular endothelium. J Cell Sci. 1990 Jun;96(Pt 2):257–262. doi: 10.1242/jcs.96.2.257. [DOI] [PubMed] [Google Scholar]
- Manyonda I. T., Soltys A. J., Hay F. C. A critical evaluation of the magnetic cell sorter and its use in the positive and negative selection of CD45RO+ cells. J Immunol Methods. 1992 Apr 27;149(1):1–10. doi: 10.1016/s0022-1759(12)80042-1. [DOI] [PubMed] [Google Scholar]
- Marlin S. D., Staunton D. E., Springer T. A., Stratowa C., Sommergruber W., Merluzzi V. J. A soluble form of intercellular adhesion molecule-1 inhibits rhinovirus infection. Nature. 1990 Mar 1;344(6261):70–72. doi: 10.1038/344070a0. [DOI] [PubMed] [Google Scholar]
- Ming M., Chuenkova M., Ortega-Barria E., Pereira M. E. Mediation of Trypanosoma cruzi invasion by sialic acid on the host cell and trans-sialidase on the trypanosome. Mol Biochem Parasitol. 1993 Jun;59(2):243–252. doi: 10.1016/0166-6851(93)90222-j. [DOI] [PubMed] [Google Scholar]
- Ming M., Ewen M. E., Pereira M. E. Trypanosome invasion of mammalian cells requires activation of the TGF beta signaling pathway. Cell. 1995 Jul 28;82(2):287–296. doi: 10.1016/0092-8674(95)90316-x. [DOI] [PubMed] [Google Scholar]
- Ortega-Barria E., Pereira M. E. A novel T. cruzi heparin-binding protein promotes fibroblast adhesion and penetration of engineered bacteria and trypanosomes into mammalian cells. Cell. 1991 Oct 18;67(2):411–421. doi: 10.1016/0092-8674(91)90192-2. [DOI] [PubMed] [Google Scholar]
- Parodi A. J., Pollevick G. D., Mautner M., Buschiazzo A., Sanchez D. O., Frasch A. C. Identification of the gene(s) coding for the trans-sialidase of Trypanosoma cruzi. EMBO J. 1992 May;11(5):1705–1710. doi: 10.1002/j.1460-2075.1992.tb05221.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pereira M. E. A developmentally regulated neuraminidase activity in Trypanosoma cruzi. Science. 1983 Mar 25;219(4591):1444–1446. doi: 10.1126/science.6338592. [DOI] [PubMed] [Google Scholar]
- Pereira M. E., Mejia J. S., Ortega-Barria E., Matzilevich D., Prioli R. P. The Trypanosoma cruzi neuraminidase contains sequences similar to bacterial neuraminidases, YWTD repeats of the low density lipoprotein receptor, and type III modules of fibronectin. J Exp Med. 1991 Jul 1;174(1):179–191. doi: 10.1084/jem.174.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prioli R. P., Mejia J. S., Pereira M. E. Monoclonal antibodies against Trypanosoma cruzi neuraminidase reveal enzyme polymorphism, recognize a subset of trypomastigotes, and enhance infection in vitro. J Immunol. 1990 Jun 1;144(11):4384–4391. [PubMed] [Google Scholar]
- Prioli R. P., Ortega-Barria E., Mejia J. S., Pereira M. E. Mapping of a B-cell epitope present in the neuraminidase of Trypanosoma cruzi. Mol Biochem Parasitol. 1992 May;52(1):85–96. doi: 10.1016/0166-6851(92)90038-l. [DOI] [PubMed] [Google Scholar]
- Rosenberg I. A., Prioli R. P., Mejia J. S., Pereira M. E. Differential expression of Trypanosoma cruzi neuraminidase in intra- and extracellular trypomastigotes. Infect Immun. 1991 Jan;59(1):464–466. doi: 10.1128/iai.59.1.464-466.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schenkman S., Eichinger D., Pereira M. E., Nussenzweig V. Structural and functional properties of Trypanosoma trans-sialidase. Annu Rev Microbiol. 1994;48:499–523. doi: 10.1146/annurev.mi.48.100194.002435. [DOI] [PubMed] [Google Scholar]
- Schenkman S., Jiang M. S., Hart G. W., Nussenzweig V. A novel cell surface trans-sialidase of Trypanosoma cruzi generates a stage-specific epitope required for invasion of mammalian cells. Cell. 1991 Jun 28;65(7):1117–1125. doi: 10.1016/0092-8674(91)90008-m. [DOI] [PubMed] [Google Scholar]
- Schenkman S., Pontes de Carvalho L., Nussenzweig V. Trypanosoma cruzi trans-sialidase and neuraminidase activities can be mediated by the same enzymes. J Exp Med. 1992 Feb 1;175(2):567–575. doi: 10.1084/jem.175.2.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scudder P., Doom J. P., Chuenkova M., Manger I. D., Pereira M. E. Enzymatic characterization of beta-D-galactoside alpha 2,3-trans-sialidase from Trypanosoma cruzi. J Biol Chem. 1993 May 5;268(13):9886–9891. [PubMed] [Google Scholar]
- Tardieux I., Webster P., Ravesloot J., Boron W., Lunn J. A., Heuser J. E., Andrews N. W. Lysosome recruitment and fusion are early events required for trypanosome invasion of mammalian cells. Cell. 1992 Dec 24;71(7):1117–1130. doi: 10.1016/s0092-8674(05)80061-3. [DOI] [PubMed] [Google Scholar]
- Vremec D., Zorbas M., Scollay R., Saunders D. J., Ardavin C. F., Wu L., Shortman K. The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells. J Exp Med. 1992 Jul 1;176(1):47–58. doi: 10.1084/jem.176.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Titto E. H., Israelski D., Araujo F. G. Circulating Trypanosoma cruzi from the same cloned population show differences in the ability to infect cells and to cause lethal infection in mice. Experientia. 1987 Dec 1;43(11-12):1227–1229. doi: 10.1007/BF01945536. [DOI] [PubMed] [Google Scholar]