Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Sep;64(9):3916–3919. doi: 10.1128/iai.64.9.3916-3919.1996

Role of gamma-delta T cells in murine Chlamydia trachomatis infection.

D M Williams 1, B G Grubbs 1, K Kelly 1, E Pack 1, R G Rank 1
PMCID: PMC174314  PMID: 8751950

Abstract

The role of gamma-delta T cells in host resistance to Chlamydia trachomatis was characterized by using a murine model of pneumonia caused by the mouse pneumonitis agent (MoPn), murine C. trachomatis. At days 3 and 7 after infection, gamma-delta T-cell-deficient knockout mice had significantly higher levels of MoPn in the lungs than did immunologically intact controls. At day 20, paradoxically, gamma-delta T-cell-deficient mice were more resistant to MoPn than were controls. This increased resistance was not due to an increased production of toxic cytokines or interleukin-10 in controls on that day. Gamma-delta T cells play a role in protection early in MoPn infection, but they may be deleterious later in infection, as has been observed in models of salmonella and trypanosome infection.

Full Text

The Full Text of this article is available as a PDF (184.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beatty W. L., Byrne G. I., Morrison R. P. Morphologic and antigenic characterization of interferon gamma-mediated persistent Chlamydia trachomatis infection in vitro. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3998–4002. doi: 10.1073/pnas.90.9.3998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cain T. K., Rank R. G. Local Th1-like responses are induced by intravaginal infection of mice with the mouse pneumonitis biovar of Chlamydia trachomatis. Infect Immun. 1995 May;63(5):1784–1789. doi: 10.1128/iai.63.5.1784-1789.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cardillo F., Falcão R. P., Rossi M. A., Mengel J. An age-related gamma delta T cell suppressor activity correlates with the outcome of autoimmunity in experimental Trypanosoma cruzi infection. Eur J Immunol. 1993 Oct;23(10):2597–2605. doi: 10.1002/eji.1830231033. [DOI] [PubMed] [Google Scholar]
  4. Carding S. R., Allan W., McMickle A., Doherty P. C. Activation of cytokine genes in T cells during primary and secondary murine influenza pneumonia. J Exp Med. 1993 Feb 1;177(2):475–482. doi: 10.1084/jem.177.2.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Emoto M., Nishimura H., Sakai T., Hiromatsu K., Gomi H., Itohara S., Yoshikai Y. Mice deficient in gamma delta T cells are resistant to lethal infection with Salmonella choleraesuis. Infect Immun. 1995 Sep;63(9):3736–3738. doi: 10.1128/iai.63.9.3736-3738.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fu Y. X., Vollmer M., Kalataradi H., Heyborne K., Reardon C., Miles C., O'Brien R., Born W. Structural requirements for peptides that stimulate a subset of gamma delta T cells. J Immunol. 1994 Feb 15;152(4):1578–1588. [PubMed] [Google Scholar]
  7. Haas W., Pereira P., Tonegawa S. Gamma/delta cells. Annu Rev Immunol. 1993;11:637–685. doi: 10.1146/annurev.iy.11.040193.003225. [DOI] [PubMed] [Google Scholar]
  8. Igietseme J. U., Ramsey K. H., Magee D. M., Williams D. M., Kincy T. J., Rank R. G. Resolution of murine chlamydial genital infection by the adoptive transfer of a biovar-specific, Th1 lymphocyte clone. Reg Immunol. 1993 Nov-Dec;5(6):317–324. [PubMed] [Google Scholar]
  9. Magee D. M., Williams D. M., Smith J. G., Bleicker C. A., Grubbs B. G., Schachter J., Rank R. G. Role of CD8 T cells in primary Chlamydia infection. Infect Immun. 1995 Feb;63(2):516–521. doi: 10.1128/iai.63.2.516-521.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mombaerts P., Arnoldi J., Russ F., Tonegawa S., Kaufmann S. H. Different roles of alpha beta and gamma delta T cells in immunity against an intracellular bacterial pathogen. Nature. 1993 Sep 2;365(6441):53–56. doi: 10.1038/365053a0. [DOI] [PubMed] [Google Scholar]
  11. Morrison R. P., Lyng K., Caldwell H. D. Chlamydial disease pathogenesis. Ocular hypersensitivity elicited by a genus-specific 57-kD protein. J Exp Med. 1989 Mar 1;169(3):663–675. doi: 10.1084/jem.169.3.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nagasawa H., Hisaeda H., Maekawa Y., Fujioka H., Ito Y., Aikawa M., Himeno K. gamma delta T cells play a crucial role in the expression of 65,000 MW heat-shock protein in mice immunized with Toxoplasma antigen. Immunology. 1994 Nov;83(3):347–352. [PMC free article] [PubMed] [Google Scholar]
  13. Ramsey K. H., Newhall W. J., 5th, Rank R. G. Humoral immune response to chlamydial genital infection of mice with the agent of mouse pneumonitis. Infect Immun. 1989 Aug;57(8):2441–2446. doi: 10.1128/iai.57.8.2441-2446.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Santos Lima E. C., Minoprio P. Chagas' disease is attenuated in mice lacking gamma delta T cells. Infect Immun. 1996 Jan;64(1):215–221. doi: 10.1128/iai.64.1.215-221.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schultz D. R., Arnold P. I. Heat shock (stress) proteins and autoimmunity in rheumatic diseases. Semin Arthritis Rheum. 1993 Jun;22(6):357–374. doi: 10.1016/s0049-0172(05)80028-9. [DOI] [PubMed] [Google Scholar]
  16. Skeen M. J., Ziegler H. K. Activation of gamma delta T cells for production of IFN-gamma is mediated by bacteria via macrophage-derived cytokines IL-1 and IL-12. J Immunol. 1995 Jun 1;154(11):5832–5841. [PubMed] [Google Scholar]
  17. Skeen M. J., Ziegler H. K. Induction of murine peritoneal gamma/delta T cells and their role in resistance to bacterial infection. J Exp Med. 1993 Sep 1;178(3):971–984. doi: 10.1084/jem.178.3.971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wagar E. A., Schachter J., Bavoil P., Stephens R. S. Differential human serologic response to two 60,000 molecular weight Chlamydia trachomatis antigens. J Infect Dis. 1990 Oct;162(4):922–927. doi: 10.1093/infdis/162.4.922. [DOI] [PubMed] [Google Scholar]
  19. Williams D. M., Byrne G. I., Grubbs B., Marshal T. J., Schachter J. Role in vivo for gamma interferon in control of pneumonia caused by Chlamydia trachomatis in mice. Infect Immun. 1988 Nov;56(11):3004–3006. doi: 10.1128/iai.56.11.3004-3006.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Williams D. M., Magee D. M., Bonewald L. F., Smith J. G., Bleicker C. A., Byrne G. I., Schachter J. A role in vivo for tumor necrosis factor alpha in host defense against Chlamydia trachomatis. Infect Immun. 1990 Jun;58(6):1572–1576. doi: 10.1128/iai.58.6.1572-1576.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Williams D. M., Schachter J., Drutz D. J., Sumaya C. V. Pneumonia due to Chlamydia trachomatis in the immunocompromised (nude) mouse. J Infect Dis. 1981 Feb;143(2):238–241. doi: 10.1093/infdis/143.2.238. [DOI] [PubMed] [Google Scholar]
  22. Yamamoto S., Russ F., Teixeira H. C., Conradt P., Kaufmann S. H. Listeria monocytogenes-induced gamma interferon secretion by intestinal intraepithelial gamma/delta T lymphocytes. Infect Immun. 1993 May;61(5):2154–2161. doi: 10.1128/iai.61.5.2154-2161.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES