Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Sep;64(9):3930–3933. doi: 10.1128/iai.64.9.3930-3933.1996

Phospholipid metabolism induced by Clostridium perfringens alpha-toxin elicits a hot-cold type of hemolysis in rabbit erythrocytes.

S Ochi 1, K Hashimoto 1, M Nagahama 1, J Sakurai 1
PMCID: PMC174317  PMID: 8751953

Abstract

GTP and AIF4- significantly stimulated the late phosphatidic acid (PA) formation induced by Clostridium perfringens alpha-toxin in rabbit erythrocyte lysates. Pertussis toxin blocked the PA production. AIF4- markedly enhanced phosphatidylethanol production induced by alpha-toxin in the presence of ethanol. GTP[gamma S] stimulated the PA formation and hemolysis induced by alpha-toxin, and GDP[beta S] inhibited them. An H-to-G mutation at position 126 (H126G) induced the PA formation and hemolysis in a Co2+ concentration-dependent manner. H148G induced neither the PA formation nor hemolysis. These results suggest that the toxin-induced hemolysis is due to activation of phospholipid metabolism systems through GTP-binding protein.

Full Text

The Full Text of this article is available as a PDF (187.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agwu D. E., McPhail L. C., Chabot M. C., Daniel L. W., Wykle R. L., McCall C. E. Choline-linked phosphoglycerides. A source of phosphatidic acid and diglycerides in stimulated neutrophils. J Biol Chem. 1989 Jan 25;264(3):1405–1413. [PubMed] [Google Scholar]
  2. Bhamidipati S. P., Hamilton J. A. NMR studies of phospholipase C hydrolysis of phosphatidylcholine in model membranes. J Biol Chem. 1993 Feb 5;268(4):2431–2434. [PubMed] [Google Scholar]
  3. Black W. J., Munoz J. J., Peacock M. G., Schad P. A., Cowell J. L., Burchall J. J., Lim M., Kent A., Steinman L., Falkow S. ADP-ribosyltransferase activity of pertussis toxin and immunomodulation by Bordetella pertussis. Science. 1988 Apr 29;240(4852):656–659. doi: 10.1126/science.2896387. [DOI] [PubMed] [Google Scholar]
  4. Exton J. H. Phosphatidylcholine breakdown and signal transduction. Biochim Biophys Acta. 1994 Apr 14;1212(1):26–42. doi: 10.1016/0005-2760(94)90186-4. [DOI] [PubMed] [Google Scholar]
  5. Fujii Y., Nomura S., Oshita Y., Sakurai J. Excitatory effect of Clostridium perfringens alpha toxin on the rat isolated aorta. Br J Pharmacol. 1986 Jul;88(3):531–539. doi: 10.1111/j.1476-5381.1986.tb10233.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fujii Y., Sakurai J. Contraction of the rat isolated aorta caused by Clostridium perfringens alpha toxin (phospholipase C): evidence for the involvement of arachidonic acid metabolism. Br J Pharmacol. 1989 May;97(1):119–124. doi: 10.1111/j.1476-5381.1989.tb11931.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Levine L., Xiao D. M., Little C. Increased arachidonic acid metabolites from cells in culture after treatment with the phosphatidylcholine-hydrolyzing phospholipase C from Bacillus cereus. Prostaglandins. 1987 Nov;34(5):633–642. doi: 10.1016/0090-6980(87)90288-7. [DOI] [PubMed] [Google Scholar]
  9. Meyers D. J., Berk R. S. Characterization of phospholipase C from Pseudomonas aeruginosa as a potent inflammatory agent. Infect Immun. 1990 Mar;58(3):659–666. doi: 10.1128/iai.58.3.659-666.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nagahama M., Michiue K., Sakurai J. Membrane-damaging action of Clostridium perfringens alpha-toxin on phospholipid liposomes. Biochim Biophys Acta. 1996 Apr 3;1280(1):120–126. doi: 10.1016/0005-2736(95)00288-x. [DOI] [PubMed] [Google Scholar]
  11. Nagahama M., Okagawa Y., Nakayama T., Nishioka E., Sakurai J. Site-directed mutagenesis of histidine residues in Clostridium perfringens alpha-toxin. J Bacteriol. 1995 Mar;177(5):1179–1185. doi: 10.1128/jb.177.5.1179-1185.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Olson S. C., Bowman E. P., Lambeth J. D. Phospholipase D activation in a cell-free system from human neutrophils by phorbol 12-myristate 13-acetate and guanosine 5'-O-(3-thiotriphosphate). Activation is calcium dependent and requires protein factors in both the plasma membrane and cytosol. J Biol Chem. 1991 Sep 15;266(26):17236–17242. [PubMed] [Google Scholar]
  13. Sakurai J., Fujii Y., Shirotani M. Contraction induced by Clostridium perfringens alpha toxin in the isolated rat ileum. Toxicon. 1990;28(4):411–418. doi: 10.1016/0041-0101(90)90079-m. [DOI] [PubMed] [Google Scholar]
  14. Sakurai J., Ochi S., Tanaka H. Evidence for coupling of Clostridium perfringens alpha-toxin-induced hemolysis to stimulated phosphatidic acid formation in rabbit erythrocytes. Infect Immun. 1993 Sep;61(9):3711–3718. doi: 10.1128/iai.61.9.3711-3718.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sakurai J., Ochi S., Tanaka H. Regulation of Clostridium perfringens alpha-toxin-activated phospholipase C in rabbit erythrocyte membranes. Infect Immun. 1994 Feb;62(2):717–721. doi: 10.1128/iai.62.2.717-721.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES