Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Oct;64(10):3975–3982. doi: 10.1128/iai.64.10.3975-3982.1996

Cytolytic activity in the genus Leishmania: involvement of a putative pore-forming protein.

F S Noronha 1, F J Ramalho-Pinto 1, M F Horta 1
PMCID: PMC174325  PMID: 8926057

Abstract

We describe here that parasites of the genus Leishmania contain a cytolytic activity which acts optimally at pH 5.0 to 5.5 and at 37 degrees C in vitro. or the four species examined, Leishmania (Leishmania) amazonensis and Leishmania (Leishmania) major presented considerable hemolytic activity, whereas Leishmania (Viannia) panamensis and Leishmania (Viannia) guyanensis showed little and no hemolytic activity, respectively. The cytolytic factor of L. amazonensis promastigotes was characterized as a protein with no protease-, phospholipase-, or detergent-like activity, probably localized inside membranous vesicles. The use of osmotic protectants revealed the colloid-osmotic nature of hemolysis, which is indicative of pore formation in the membranes of target cells. This putative pore-forming protein also damaged nucleated cells, including macrophages, causing an increase in their membrane permeability with leakage of cytoplasmic proteins. Both promastigotes and amastigotes express this lytic activity, suggesting that the cytolysin may have a function in both stages of this parasite. The pH and temperature required for optimal activity indicate that it might be more effective within the mammalian host, particularly inside the macrophage parasitophorous vacuole. In promastigotes of L. amazonensis, the expression of lytic activity seems to be regulated during their growth in vitro, being maximal at the early stationary phase.

Full Text

The Full Text of this article is available as a PDF (248.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander J., Russell D. G. The interaction of Leishmania species with macrophages. Adv Parasitol. 1992;31:175–254. doi: 10.1016/s0065-308x(08)60022-6. [DOI] [PubMed] [Google Scholar]
  2. Andrews N. W., Abrams C. K., Slatin S. L., Griffiths G. A T. cruzi-secreted protein immunologically related to the complement component C9: evidence for membrane pore-forming activity at low pH. Cell. 1990 Jun 29;61(7):1277–1287. doi: 10.1016/0092-8674(90)90692-8. [DOI] [PubMed] [Google Scholar]
  3. Andrews N. W., Portnoy D. A. Cytolysins from intracellular pathogens. Trends Microbiol. 1994 Aug;2(8):261–263. doi: 10.1016/0966-842x(94)90001-9. [DOI] [PubMed] [Google Scholar]
  4. Andrews N. W., Webster P. Phagolysosomal escape by intracellular pathogens. Parasitol Today. 1991 Dec;7(12):335–340. doi: 10.1016/0169-4758(91)90212-7. [DOI] [PubMed] [Google Scholar]
  5. Andrews N. W., Whitlow M. B. Secretion by Trypanosoma cruzi of a hemolysin active at low pH. Mol Biochem Parasitol. 1989 Mar 15;33(3):249–256. doi: 10.1016/0166-6851(89)90086-8. [DOI] [PubMed] [Google Scholar]
  6. Antoine J. C., Prina E., Jouanne C., Bongrand P. Parasitophorous vacuoles of Leishmania amazonensis-infected macrophages maintain an acidic pH. Infect Immun. 1990 Mar;58(3):779–787. doi: 10.1128/iai.58.3.779-787.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bhakdi S., Mackman N., Nicaud J. M., Holland I. B. Escherichia coli hemolysin may damage target cell membranes by generating transmembrane pores. Infect Immun. 1986 Apr;52(1):63–69. doi: 10.1128/iai.52.1.63-69.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bicalho H. M., Gontijo C. M., Nogueira-Machado J. A. A simple technique for simultaneous human leukocytes separation. J Immunol Methods. 1981;40(1):115–116. doi: 10.1016/0022-1759(81)90087-9. [DOI] [PubMed] [Google Scholar]
  9. Bielecki J., Youngman P., Connelly P., Portnoy D. A. Bacillus subtilis expressing a haemolysin gene from Listeria monocytogenes can grow in mammalian cells. Nature. 1990 May 10;345(6271):175–176. doi: 10.1038/345175a0. [DOI] [PubMed] [Google Scholar]
  10. Bordier C. The promastigote surface protease of Leishmania. Parasitol Today. 1987 May;3(5):151–153. doi: 10.1016/0169-4758(87)90199-2. [DOI] [PubMed] [Google Scholar]
  11. Chakravarty R., Sharma M. C., Gupta A. K., Prakash N., Saran R. Leishmania donovani: hemolytic activity of promastigotes. Exp Parasitol. 1994 May;78(3):253–258. doi: 10.1006/expr.1994.1026. [DOI] [PubMed] [Google Scholar]
  12. Chen Y., Zychlinsky A. Apoptosis induced by bacterial pathogens. Microb Pathog. 1994 Oct;17(4):203–212. doi: 10.1006/mpat.1994.1066. [DOI] [PubMed] [Google Scholar]
  13. Desai S. A., Krogstad D. J., McCleskey E. W. A nutrient-permeable channel on the intraerythrocytic malaria parasite. Nature. 1993 Apr 15;362(6421):643–646. doi: 10.1038/362643a0. [DOI] [PubMed] [Google Scholar]
  14. Dwyer D. M., Gottlieb M. The surface membrane chemistry of Leishmania: its possible role in parasite sequestration and survival. J Cell Biochem. 1983;23(1-4):35–45. doi: 10.1002/jcb.240230105. [DOI] [PubMed] [Google Scholar]
  15. Franke E. D., McGreevy P. B., Katz S. P., Sacks D. L. Growth cycle-dependent generation of complement-resistant Leishmania promastigotes. J Immunol. 1985 Apr;134(4):2713–2718. [PubMed] [Google Scholar]
  16. Fujiki Y., Hubbard A. L., Fowler S., Lazarow P. B. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol. 1982 Apr;93(1):97–102. doi: 10.1083/jcb.93.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fulford D. E., Marciano-Cabral F. Cytolytic activity of Naegleria fowleri cell-free extract. J Protozool. 1986 Nov;33(4):498–502. doi: 10.1111/j.1550-7408.1986.tb05649.x. [DOI] [PubMed] [Google Scholar]
  18. Howard M. K., Sayers G., Miles M. A. Leishmania donovani metacyclic promastigotes: transformation in vitro, lectin agglutination, complement resistance, and infectivity. Exp Parasitol. 1987 Oct;64(2):147–156. doi: 10.1016/0014-4894(87)90138-x. [DOI] [PubMed] [Google Scholar]
  19. Howell K. E., Palade G. E. Hepatic Golgi fractions resolved into membrane and content subfractions. J Cell Biol. 1982 Mar;92(3):822–832. doi: 10.1083/jcb.92.3.822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kang H. S., Welch W. J. Characterization and purification of the 94-kDa glucose-regulated protein. J Biol Chem. 1991 Mar 25;266(9):5643–5649. [PubMed] [Google Scholar]
  21. Kweider M., Lemesre J. L., Santoro F., Kusnierz J. P., Sadigursky M., Capron A. Development of metacyclic Leishmania promastigotes is associated with the increasing expression of GP65, the major surface antigen. Parasite Immunol. 1989 May;11(3):197–209. doi: 10.1111/j.1365-3024.1989.tb00659.x. [DOI] [PubMed] [Google Scholar]
  22. Leippe M., Ebel S., Schoenberger O. L., Horstmann R. D., Müller-Eberhard H. J. Pore-forming peptide of pathogenic Entamoeba histolytica. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7659–7663. doi: 10.1073/pnas.88.17.7659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Liew F. Y., O'Donnell C. A. Immunology of leishmaniasis. Adv Parasitol. 1993;32:161–259. doi: 10.1016/s0065-308x(08)60208-0. [DOI] [PubMed] [Google Scholar]
  24. Noronha F. S., Ramalho-Pinto F. J., Horta M. F. Identification of a putative pore-forming hemolysin active at acid pH in Leishmania amazonensis. Braz J Med Biol Res. 1994 Feb;27(2):477–482. [PubMed] [Google Scholar]
  25. O'Daly J. A., Aso P. M. Trypanosoma cruzi, Leishmania donovani, and L. mexicana: extract factor that lyses mammalian cells. Exp Parasitol. 1979 Apr;47(2):222–231. doi: 10.1016/0014-4894(79)90075-4. [DOI] [PubMed] [Google Scholar]
  26. Ojcius D. M., Ding-E Young J. A role for pore-forming proteins in the pathogenesis by parasites? Parasitol Today. 1990 May;6(5):163–165. doi: 10.1016/0169-4758(90)90340-a. [DOI] [PubMed] [Google Scholar]
  27. Ojcius D. M., Young J. D. Cytolytic pore-forming proteins and peptides: is there a common structural motif? Trends Biochem Sci. 1991 Jun;16(6):225–229. doi: 10.1016/0968-0004(91)90090-i. [DOI] [PubMed] [Google Scholar]
  28. Ostolaza H., Bartolomé B., Ortiz de Zárate I., de la Cruz F., Goñi F. M. Release of lipid vesicle contents by the bacterial protein toxin alpha-haemolysin. Biochim Biophys Acta. 1993 Apr 8;1147(1):81–88. doi: 10.1016/0005-2736(93)90318-t. [DOI] [PubMed] [Google Scholar]
  29. Pimenta P. F., Saraiva E. M., Sacks D. L. The comparative fine structure and surface glycoconjugate expression of three life stages of Leishmania major. Exp Parasitol. 1991 Feb;72(2):191–204. doi: 10.1016/0014-4894(91)90137-l. [DOI] [PubMed] [Google Scholar]
  30. Portnoy D. A., Chakraborty T., Goebel W., Cossart P. Molecular determinants of Listeria monocytogenes pathogenesis. Infect Immun. 1992 Apr;60(4):1263–1267. doi: 10.1128/iai.60.4.1263-1267.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pupkis M. F., Tetley L., Coombs G. H. Leishmania mexicana: amastigote hydrolases in unusual lysosomes. Exp Parasitol. 1986 Aug;62(1):29–39. doi: 10.1016/0014-4894(86)90005-6. [DOI] [PubMed] [Google Scholar]
  32. ROSENTHAL A. F., GEYER R. P. A synthetic inhibitor of venom lecithinase A. J Biol Chem. 1960 Aug;235:2202–2206. [PubMed] [Google Scholar]
  33. Reynolds J. A., Trayer H. Solubility of membrane proteins in aqueous media. J Biol Chem. 1971 Dec 10;246(23):7337–7342. [PubMed] [Google Scholar]
  34. Ropele M., Menestrina G. Electrical properties and molecular architecture of the channel formed by Escherichia coli hemolysin in planar lipid membranes. Biochim Biophys Acta. 1989 Oct 2;985(1):9–18. doi: 10.1016/0005-2736(89)90096-5. [DOI] [PubMed] [Google Scholar]
  35. Russell D. G. Mycobacterium and Leishmania: stowaways in the endosomal network. Trends Cell Biol. 1995 Mar;5(3):125–128. doi: 10.1016/s0962-8924(00)88963-1. [DOI] [PubMed] [Google Scholar]
  36. Sacks D. L., Brodin T. N., Turco S. J. Developmental modification of the lipophosphoglycan from Leishmania major promastigotes during metacyclogenesis. Mol Biochem Parasitol. 1990 Sep-Oct;42(2):225–233. doi: 10.1016/0166-6851(90)90165-i. [DOI] [PubMed] [Google Scholar]
  37. Sacks D. L., Hieny S., Sher A. Identification of cell surface carbohydrate and antigenic changes between noninfective and infective developmental stages of Leishmania major promastigotes. J Immunol. 1985 Jul;135(1):564–569. [PubMed] [Google Scholar]
  38. Sacks D. L., Perkins P. V. Development of infective stage Leishmania promastigotes within phlebotomine sand flies. Am J Trop Med Hyg. 1985 May;34(3):456–459. doi: 10.4269/ajtmh.1985.34.456. [DOI] [PubMed] [Google Scholar]
  39. Sacks D. L., Perkins P. V. Identification of an infective stage of Leishmania promastigotes. Science. 1984 Mar 30;223(4643):1417–1419. doi: 10.1126/science.6701528. [DOI] [PubMed] [Google Scholar]
  40. Scherrer R., Gerhardt P. Molecular sieving by the Bacillus megaterium cell wall and protoplast. J Bacteriol. 1971 Sep;107(3):718–735. doi: 10.1128/jb.107.3.718-735.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sessa G., Freer J. H., Colacicco G., Weissmann G. Interaction of alytic polypeptide, melittin, with lipid membrane systems. J Biol Chem. 1969 Jul 10;244(13):3575–3582. [PubMed] [Google Scholar]
  42. Shin M. L., Michaels D. W., Mayer M. M. Membrane damage by a toxin from the sea anemone Stoichactis helianthus. II. Effect of membrane lipid composition in a liposome system. Biochim Biophys Acta. 1979 Jul 19;555(1):79–88. doi: 10.1016/0005-2736(79)90073-7. [DOI] [PubMed] [Google Scholar]
  43. Stone G. C., Hammerschlag R., Bobinski J. A. Complex compartmentation of tyrosine sulfate-containing proteins undergoing fast axonal transport. J Neurochem. 1987 Jun;48(6):1736–1744. doi: 10.1111/j.1471-4159.1987.tb05731.x. [DOI] [PubMed] [Google Scholar]
  44. Veras P. S., Moulia C., Dauguet C., Tunis C. T., Thibon M., Rabinovitch M. Entry and survival of Leishmania amazonensis amastigotes within phagolysosome-like vacuoles that shelter Coxiella burnetii in Chinese hamster ovary cells. Infect Immun. 1995 Sep;63(9):3502–3506. doi: 10.1128/iai.63.9.3502-3506.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Welch R. A. Pore-forming cytolysins of gram-negative bacteria. Mol Microbiol. 1991 Mar;5(3):521–528. doi: 10.1111/j.1365-2958.1991.tb00723.x. [DOI] [PubMed] [Google Scholar]
  46. Young J. D., Cohn Z. A. Cellular and humoral mechanisms of cytotoxicity: structural and functional analogies. Adv Immunol. 1987;41:269–332. doi: 10.1016/s0065-2776(08)60033-4. [DOI] [PubMed] [Google Scholar]
  47. Young J. D., Lowrey D. M. Biochemical and functional characterization of a membrane-associated pore-forming protein from the pathogenic ameboflagellate Naegleria fowleri. J Biol Chem. 1989 Jan 15;264(2):1077–1083. [PubMed] [Google Scholar]
  48. Young J. D., Young T. M., Lu L. P., Unkeless J. C., Cohn Z. A. Characterization of a membrane pore-forming protein from Entamoeba histolytica. J Exp Med. 1982 Dec 1;156(6):1677–1690. doi: 10.1084/jem.156.6.1677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zilberstein D., Shapira M. The role of pH and temperature in the development of Leishmania parasites. Annu Rev Microbiol. 1994;48:449–470. doi: 10.1146/annurev.mi.48.100194.002313. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES