Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Oct;64(10):4154–4162. doi: 10.1128/iai.64.10.4154-4162.1996

Dual flaA1 flaB1 mutant of Serpulina hyodysenteriae expressing periplasmic flagella is severely attenuated in a murine model of swine dysentery.

E L Rosey 1, M J Kennedy 1, R J Yancey Jr 1
PMCID: PMC174351  PMID: 8926083

Abstract

The motility imparted by the periplasmic flagella (PF) of Serpulina hyodysenteriae is thought to play a pivotal role in the enteropathogenicity of this spirochete. The complex PF are composed of multiple class A and class B polypeptides. Isogenic strains containing specifically disrupted flaAl or flaB1 alleles remain capable of expressing PF, although such mutants display aberrant motility in vitro. To further examine the role that these proteins play in the maintenance of periplasmic flagellar structural integrity, motility, and fitness for intestinal colonization, we constructed a novel strain of S. hyodysenteriae which is deficient in both FlaA1 and FlaB1. To facilitate construction of this strain, a chloramphenicol gene cassette, with general application as a selectable marker in prokaryotes, was developed. The cloned flaAl and flaB1 genes were disrupted by replacement of internal fragments with chloramphenicol and kanamycin gene cassettes, respectively. The inactivated flagellar genes were introduced into S. hyodysenteriae, and allelic exchange at the targeted chromosomal flaA1 and flaB1 loci was verified by PCR analysis. Immunoblots or cell lysates with antiserum raised against purified FlaA or FlaB confirmed the absence of the corresponding sheath and core proteins in this dual flagellar mutant. These mutations selectively abolished the expression of the targeted genes without affecting the synthesis of other immunologically related FlaB proteins. The resulting flaA1 flaB1 mutant exhibited altered motility in vitro. Surprisingly, it was capable of assembling periplasmic flagella that were morphologically normal as evidenced by electron microscopy. The virulence of this strain was assessed in a murine model of swine dysentery by determining the incidence of cecal lesions and the persistence of S. hyodysenteriae in the gut. Mice challenged with the wild-type strain or a passage control strain showed a dose-related response to the challenge organism. The dual flagellar mutant was severely attenuated in murine challenge experiments, suggesting that the FlaA1 and FlaB1 proteins are dispensable for flagellar assembly but critical for normal flagellar function and colonization of mucosal surfaces of the gastrointestinal tract. This strain represents the first spirochete engineered to contain specifically defined mutations in more than one genetic locus.

Full Text

The Full Text of this article is available as a PDF (761.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abhayawardhane Y., Stewart G. C. Bacillus subtilis possesses a second determinant with extensive sequence similarity to the Escherichia coli mreB morphogene. J Bacteriol. 1995 Feb;177(3):765–773. doi: 10.1128/jb.177.3.765-773.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adler J. A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J Gen Microbiol. 1973 Jan;74(1):77–91. doi: 10.1099/00221287-74-1-77. [DOI] [PubMed] [Google Scholar]
  3. Alm R. A., Guerry P., Trust T. J. Significance of duplicated flagellin genes in Campylobacter. J Mol Biol. 1993 Mar 20;230(2):359–363. doi: 10.1006/jmbi.1993.1151. [DOI] [PubMed] [Google Scholar]
  4. Blaser M. J. Helicobacter pylori: microbiology of a 'slow' bacterial infection. Trends Microbiol. 1993 Oct;1(7):255–260. doi: 10.1016/0966-842x(93)90047-u. [DOI] [PubMed] [Google Scholar]
  5. Boyer H. W., Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. doi: 10.1016/0022-2836(69)90288-5. [DOI] [PubMed] [Google Scholar]
  6. Champion C. I., Miller J. N., Lovett M. A., Blanco D. R. Cloning, sequencing, and expression of two class B endoflagellar genes of Treponema pallidum subsp. pallidum encoding the 34.5- and 31.0-kilodalton proteins. Infect Immun. 1990 Jun;58(6):1697–1704. doi: 10.1128/iai.58.6.1697-1704.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chan E. C., Qiu Y. S., Siboo R., Noble P. Evidence for two distinct locomotory phenotypes of Treponema denticola ATCC 35405. Oral Microbiol Immunol. 1995 Apr;10(2):122–124. doi: 10.1111/j.1399-302x.1995.tb00131.x. [DOI] [PubMed] [Google Scholar]
  8. Cockayne A., Bailey M. J., Penn C. W. Analysis of sheath and core structures of the axial filament of Treponema pallidum. J Gen Microbiol. 1987 Jun;133(6):1397–1407. doi: 10.1099/00221287-133-6-1397. [DOI] [PubMed] [Google Scholar]
  9. Cockayne A., Strugnell R. A., Bailey M. J., Penn C. W. Comparative antigenic analysis of Treponema pallidum laboratory and street strains. J Gen Microbiol. 1989 Aug;135(8):2241–2247. doi: 10.1099/00221287-135-8-2241. [DOI] [PubMed] [Google Scholar]
  10. Fauchère J. L., Kervella M., Rosenau A., Mohanna K., Véron M. Adhesion to HeLa cells of Campylobacter jejuni and C. coli outer membrane components. Res Microbiol. 1989 Jul-Aug;140(6):379–392. doi: 10.1016/0923-2508(89)90014-4. [DOI] [PubMed] [Google Scholar]
  11. Gabe J. D., Chang R. J., Slomiany R., Andrews W. H., McCaman M. T. Isolation of extracytoplasmic proteins from Serpulina hyodysenteriae B204 and molecular cloning of the flaB1 gene encoding a 38-kilodalton flagellar protein. Infect Immun. 1995 Jan;63(1):142–148. doi: 10.1128/iai.63.1.142-148.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gerl L., Sumper M. Halobacterial flagellins are encoded by a multigene family. Characterization of five flagellin genes. J Biol Chem. 1988 Sep 15;263(26):13246–13251. [PubMed] [Google Scholar]
  13. Grant C. C., Konkel M. E., Cieplak W., Jr, Tompkins L. S. Role of flagella in adherence, internalization, and translocation of Campylobacter jejuni in nonpolarized and polarized epithelial cell cultures. Infect Immun. 1993 May;61(5):1764–1771. doi: 10.1128/iai.61.5.1764-1771.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Guerry P., Alm R. A., Power M. E., Logan S. M., Trust T. J. Role of two flagellin genes in Campylobacter motility. J Bacteriol. 1991 Aug;173(15):4757–4764. doi: 10.1128/jb.173.15.4757-4764.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Harris D. L., Glock R. D., Christensen C. R., Kinyon J. M. Inoculation of pigs with Treponema hyodysenteriae (new species) and reproduction f the disease. Vet Med Small Anim Clin. 1972 Jan;67(1):61–64. [PubMed] [Google Scholar]
  16. Helmann J. D. Alternative sigma factors and the regulation of flagellar gene expression. Mol Microbiol. 1991 Dec;5(12):2875–2882. doi: 10.1111/j.1365-2958.1991.tb01847.x. [DOI] [PubMed] [Google Scholar]
  17. Helmann J. D., Chamberlin M. J. DNA sequence analysis suggests that expression of flagellar and chemotaxis genes in Escherichia coli and Salmonella typhimurium is controlled by an alternative sigma factor. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6422–6424. doi: 10.1073/pnas.84.18.6422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Holt S. C. Anatomy and chemistry of spirochetes. Microbiol Rev. 1978 Mar;42(1):114–160. doi: 10.1128/mr.42.1.114-160.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Horinouchi S., Weisblum B. Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. J Bacteriol. 1982 May;150(2):815–825. doi: 10.1128/jb.150.2.815-825.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Josenhans C., Labigne A., Suerbaum S. Comparative ultrastructural and functional studies of Helicobacter pylori and Helicobacter mustelae flagellin mutants: both flagellin subunits, FlaA and FlaB, are necessary for full motility in Helicobacter species. J Bacteriol. 1995 Jun;177(11):3010–3020. doi: 10.1128/jb.177.11.3010-3020.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kennedy M. J., Lawless J. G. Role of chemotaxis in the ecology of denitrifiers. Appl Environ Microbiol. 1985 Jan;49(1):109–114. doi: 10.1128/aem.49.1.109-114.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kennedy M. J., Rosnick D. K., Ulrich R. G., Yancey R. J., Jr Association of Treponema hyodysenteriae with porcine intestinal mucosa. J Gen Microbiol. 1988 Jun;134(6):1565–1576. doi: 10.1099/00221287-134-6-1565. [DOI] [PubMed] [Google Scholar]
  23. Kennedy M. J., Yancey R. J., Jr Motility and chemotaxis in Serpulina hyodysenteriae. Vet Microbiol. 1996 Mar;49(1-2):21–30. doi: 10.1016/0378-1135(95)00174-3. [DOI] [PubMed] [Google Scholar]
  24. Kimsey R. B., Spielman A. Motility of Lyme disease spirochetes in fluids as viscous as the extracellular matrix. J Infect Dis. 1990 Nov;162(5):1205–1208. doi: 10.1093/infdis/162.5.1205. [DOI] [PubMed] [Google Scholar]
  25. Klitorinos A., Noble P., Siboo R., Chan E. C. Viscosity-dependent locomotion of oral spirochetes. Oral Microbiol Immunol. 1993 Aug;8(4):242–244. doi: 10.1111/j.1399-302x.1993.tb00567.x. [DOI] [PubMed] [Google Scholar]
  26. Koopman M. B., Baats E., de Leeuw O. S., van der Zeijst B. A., Kusters J. G. Molecular analysis of a flagellar core protein gene of Serpulina (Treponema) hyodysenteriae. J Gen Microbiol. 1993 Aug;139(8):1701–1706. doi: 10.1099/00221287-139-8-1701. [DOI] [PubMed] [Google Scholar]
  27. Koopman M. B., Baats E., van Vorstenbosch C. J., van der Zeijst B. A., Kusters J. G. The periplasmic flagella of Serpulina (Treponema) hyodysenteriae are composed of two sheath proteins and three core proteins. J Gen Microbiol. 1992 Dec;138(12):2697–2706. doi: 10.1099/00221287-138-12-2697. [DOI] [PubMed] [Google Scholar]
  28. Koopman M. B., de Leeuw O. S., van der Zeijst B. M., Kusters J. G. Cloning and DNA sequence analysis of a Serpulina (Treponema) hyodysenteriae gene encoding a periplasmic flagellar sheath protein. Infect Immun. 1992 Jul;60(7):2920–2925. doi: 10.1128/iai.60.7.2920-2925.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kostrzynska M., Betts J. D., Austin J. W., Trust T. J. Identification, characterization, and spatial localization of two flagellin species in Helicobacter pylori flagella. J Bacteriol. 1991 Feb;173(3):937–946. doi: 10.1128/jb.173.3.937-946.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  31. Li Z., Dumas F., Dubreuil D., Jacques M. A species-specific periplasmic flagellar protein of Serpulina (Treponema) hyodysenteriae. J Bacteriol. 1993 Dec;175(24):8000–8007. doi: 10.1128/jb.175.24.8000-8007.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Li Z., Jensen N. S., Bélanger M., L'Espérance M. C., Jacques M. Molecular characterization of Serpulina (Treponema) hyodysenteriae isolates representing serotypes 8 and 9. J Clin Microbiol. 1992 Nov;30(11):2941–2947. doi: 10.1128/jcm.30.11.2941-2947.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Milner J. A., Sellwood R. Chemotactic response to mucin by Serpulina hyodysenteriae and other porcine spirochetes: potential role in intestinal colonization. Infect Immun. 1994 Sep;62(9):4095–4099. doi: 10.1128/iai.62.9.4095-4099.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Norris S. J., Charon N. W., Cook R. G., Fuentes M. D., Limberger R. J. Antigenic relatedness and N-terminal sequence homology define two classes of periplasmic flagellar proteins of Treponema pallidum subsp. pallidum and Treponema phagedenis. J Bacteriol. 1988 Sep;170(9):4072–4082. doi: 10.1128/jb.170.9.4072-4082.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Norris S. J. Polypeptides of Treponema pallidum: progress toward understanding their structural, functional, and immunologic roles. Treponema Pallidum Polypeptide Research Group. Microbiol Rev. 1993 Sep;57(3):750–779. doi: 10.1128/mr.57.3.750-779.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Nuijten P. J., Bleumink-Pluym N. M., Gaastra W., van der Zeijst B. A. Flagellin expression in Campylobacter jejuni is regulated at the transcriptional level. Infect Immun. 1989 Apr;57(4):1084–1088. doi: 10.1128/iai.57.4.1084-1088.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Nuijten P. J., van Asten F. J., Gaastra W., van der Zeijst B. A. Structural and functional analysis of two Campylobacter jejuni flagellin genes. J Biol Chem. 1990 Oct 15;265(29):17798–17804. [PubMed] [Google Scholar]
  38. Rosey E. L., Kennedy M. J., Petrella D. K., Ulrich R. G., Yancey R. J., Jr Inactivation of Serpulina hyodysenteriae flaA1 and flaB1 periplasmic flagellar genes by electroporation-mediated allelic exchange. J Bacteriol. 1995 Oct;177(20):5959–5970. doi: 10.1128/jb.177.20.5959-5970.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rosey E. L., Oskouian B., Stewart G. C. Lactose metabolism by Staphylococcus aureus: characterization of lacABCD, the structural genes of the tagatose 6-phosphate pathway. J Bacteriol. 1991 Oct;173(19):5992–5998. doi: 10.1128/jb.173.19.5992-5998.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Suerbaum S., Josenhans C., Labigne A. Cloning and genetic characterization of the Helicobacter pylori and Helicobacter mustelae flaB flagellin genes and construction of H. pylori flaA- and flaB-negative mutants by electroporation-mediated allelic exchange. J Bacteriol. 1993 Jun;175(11):3278–3288. doi: 10.1128/jb.175.11.3278-3288.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Trueba G. A., Bolin C. A., Zuerner R. L. Characterization of the periplasmic flagellum proteins of Leptospira interrogans. J Bacteriol. 1992 Jul;174(14):4761–4768. doi: 10.1128/jb.174.14.4761-4768.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Varley A. W., Stewart G. C. The divIVB region of the Bacillus subtilis chromosome encodes homologs of Escherichia coli septum placement (minCD) and cell shape (mreBCD) determinants. J Bacteriol. 1992 Nov;174(21):6729–6742. doi: 10.1128/jb.174.21.6729-6742.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wassenaar T. M., Bleumink-Pluym N. M., Newell D. G., Nuijten P. J., van der Zeijst B. A. Differential flagellin expression in a flaA flaB+ mutant of Campylobacter jejuni. Infect Immun. 1994 Sep;62(9):3901–3906. doi: 10.1128/iai.62.9.3901-3906.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yao R., Burr D. H., Doig P., Trust T. J., Niu H., Guerry P. Isolation of motile and non-motile insertional mutants of Campylobacter jejuni: the role of motility in adherence and invasion of eukaryotic cells. Mol Microbiol. 1994 Dec;14(5):883–893. doi: 10.1111/j.1365-2958.1994.tb01324.x. [DOI] [PubMed] [Google Scholar]
  45. ter Huurne A. A., van Houten M., Muir S., Kusters J. G., van der Zeijst B. A., Gaastra W. Inactivation of a Serpula (Treponema) hyodysenteriae hemolysin gene by homologous recombination: importance of this hemolysin in pathogenesis in mice. FEMS Microbiol Lett. 1992 Apr 1;71(1):109–113. doi: 10.1016/0378-1097(92)90550-8. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES