Abstract
Salmonella typhi vaccine strain CVD 908 can deliver heterologous antigens to the host immune system following mucosal immunization. Stable expression of foreign proteins in Salmonella cells often requires antigen-specific engineering strategies. Fusion of antigens to stabilizing proteins has proven to be a successful strategy for rescuing otherwise unstable proteins. We designed plasmids to allow the fusion of antigens to the amino terminus or carboxyl terminus of fragment C of tetanus toxin, separated by a 4-amino-acid hinge region. Towards the ultimate goal of developing a live oral diphtheria-pertussis-tetanus vaccine, we used these plasmids to stably express the S1 subunit of pertussis toxin in CVD 908. Driven by the anaerobically inducible nirB promoter, the S1 subunit alone was expressed poorly in Salmonella cytoplasm. In contrast, hybrid proteins with S1 fused to either the amino or carboxyl terminus of fragment C were expressed at a high level in CVD 908 and were recognized in Western blot (immunoblot) analysis by monoclonal antibodies directed to S1 and to fragment C. Mice were immunized by the oral or intranasal routes with CVD 908 derivatives harboring these recombinant plasmids. All fusion proteins elicited serum antibody responses to fragment C following intranasal immunization, whereas oral inoculation did not. The configuration of antigens constituting the fusion was critical; S1 fused to the amino terminus of fragment C was less effective than S1 fused to the carboxyl terminus in generating anti-fragment C antibodies. CVD 908 expressing truncated S1 fused to the carboxyl terminus of fragment C elicited neutralizing serum pertussis antitoxin following intranasal immunization of mice.
Full Text
The Full Text of this article is available as a PDF (416.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Antoine R., Locht C. Roles of the disulfide bond and the carboxy-terminal region of the S1 subunit in the assembly and biosynthesis of pertussis toxin. Infect Immun. 1990 Jun;58(6):1518–1526. doi: 10.1128/iai.58.6.1518-1526.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barbieri J. T., Armellini D., Molkentin J., Rappuoli R. Construction of a diphtheria toxin A fragment-C180 peptide fusion protein which elicits a neutralizing antibody response against diphtheria toxin and pertussis toxin. Infect Immun. 1992 Dec;60(12):5071–5077. doi: 10.1128/iai.60.12.5071-5077.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Border W. A., Ruoslahti E. Transforming growth factor-beta in disease: the dark side of tissue repair. J Clin Invest. 1992 Jul;90(1):1–7. doi: 10.1172/JCI115821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boucher P., Sato H., Sato Y., Locht C. Neutralizing antibodies and immunoprotection against pertussis and tetanus obtained by use of a recombinant pertussis toxin-tetanus toxin fusion protein. Infect Immun. 1994 Feb;62(2):449–456. doi: 10.1128/iai.62.2.449-456.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chatfield S. N., Charles I. G., Makoff A. J., Oxer M. D., Dougan G., Pickard D., Slater D., Fairweather N. F. Use of the nirB promoter to direct the stable expression of heterologous antigens in Salmonella oral vaccine strains: development of a single-dose oral tetanus vaccine. Biotechnology (N Y) 1992 Aug;10(8):888–892. doi: 10.1038/nbt0892-888. [DOI] [PubMed] [Google Scholar]
- Curtiss R., 3rd, Kelly S. M., Gulig P. A., Nakayama K. Selective delivery of antigens by recombinant bacteria. Curr Top Microbiol Immunol. 1989;146:35–49. doi: 10.1007/978-3-642-74529-4_4. [DOI] [PubMed] [Google Scholar]
- Douce G., Turcotte C., Cropley I., Roberts M., Pizza M., Domenghini M., Rappuoli R., Dougan G. Mutants of Escherichia coli heat-labile toxin lacking ADP-ribosyltransferase activity act as nontoxic, mucosal adjuvants. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1644–1648. doi: 10.1073/pnas.92.5.1644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dougan G., Hormaeche C. E., Maskell D. J. Live oral Salmonella vaccines: potential use of attenuated strains as carriers of heterologous antigens to the immune system. Parasite Immunol. 1987 Mar;9(2):151–160. doi: 10.1111/j.1365-3024.1987.tb00496.x. [DOI] [PubMed] [Google Scholar]
- Fairweather N. F., Chatfield S. N., Makoff A. J., Strugnell R. A., Bester J., Maskell D. J., Dougan G. Oral vaccination of mice against tetanus by use of a live attenuated Salmonella carrier. Infect Immun. 1990 May;58(5):1323–1326. doi: 10.1128/iai.58.5.1323-1326.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferrante A., Nandoskar M., Bates E. J., Goh D. H. Staphylococcus aureus-stimulated human mononuclear leucocyte-conditioned medium augments the basal and stimuli-induced neutrophil respiratory burst and degranulation. Immunology. 1987 Mar;60(3):431–438. [PMC free article] [PubMed] [Google Scholar]
- Fouts T. R., Lewis G. K., Hone D. M. Construction and characterization of a Salmonella typhi-based human immunodeficiency virus type 1 vector vaccine. Vaccine. 1995 Apr;13(6):561–569. doi: 10.1016/0264-410x(94)00016-g. [DOI] [PubMed] [Google Scholar]
- Girón J. A., Xu J. G., González C. R., Hone D., Kaper J. B., Levine M. M. Simultaneous expression of CFA/I and CS3 colonization factor antigens of enterotoxigenic Escherichia coli by delta aroC, delta aroD Salmonella typhi vaccine strain CVD 908. Vaccine. 1995 Jul;13(10):939–946. doi: 10.1016/0264-410x(95)00003-j. [DOI] [PubMed] [Google Scholar]
- Goldberg A. L. Degradation of abnormal proteins in Escherichia coli (protein breakdown-protein structure-mistranslation-amino acid analogs-puromycin). Proc Natl Acad Sci U S A. 1972 Feb;69(2):422–426. doi: 10.1073/pnas.69.2.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gonzalez C., Hone D., Noriega F. R., Tacket C. O., Davis J. R., Losonsky G., Nataro J. P., Hoffman S., Malik A., Nardin E. Salmonella typhi vaccine strain CVD 908 expressing the circumsporozoite protein of Plasmodium falciparum: strain construction and safety and immunogenicity in humans. J Infect Dis. 1994 Apr;169(4):927–931. doi: 10.1093/infdis/169.4.927. [DOI] [PubMed] [Google Scholar]
- Guzmán C. A., Brownlie R. M., Kadurugamuwa J., Walker M. J., Timmis K. N. Antibody responses in the lungs of mice following oral immunization with Salmonella typhimurium aroA and invasive Escherichia coli strains expressing the filamentous hemagglutinin of Bordetella pertussis. Infect Immun. 1991 Dec;59(12):4391–4397. doi: 10.1128/iai.59.12.4391-4397.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gómez-Duarte O. G., Galen J., Chatfield S. N., Rappuoli R., Eidels L., Levine M. M. Expression of fragment C of tetanus toxin fused to a carboxyl-terminal fragment of diphtheria toxin in Salmonella typhi CVD 908 vaccine strain. Vaccine. 1995 Nov;13(16):1596–1602. doi: 10.1016/0264-410x(95)00094-h. [DOI] [PubMed] [Google Scholar]
- Halpern J. L., Habig W. H., Neale E. A., Stibitz S. Cloning and expression of functional fragment C of tetanus toxin. Infect Immun. 1990 Apr;58(4):1004–1009. doi: 10.1128/iai.58.4.1004-1009.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hewlett E. L., Sauer K. T., Myers G. A., Cowell J. L., Guerrant R. L. Induction of a novel morphological response in Chinese hamster ovary cells by pertussis toxin. Infect Immun. 1983 Jun;40(3):1198–1203. doi: 10.1128/iai.40.3.1198-1203.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoiseth S. K., Stocker B. A. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature. 1981 May 21;291(5812):238–239. doi: 10.1038/291238a0. [DOI] [PubMed] [Google Scholar]
- Hone D. M., Harris A. M., Chatfield S., Dougan G., Levine M. M. Construction of genetically defined double aro mutants of Salmonella typhi. Vaccine. 1991 Nov;9(11):810–816. doi: 10.1016/0264-410x(91)90218-u. [DOI] [PubMed] [Google Scholar]
- Jayaraman P. S., Cole J. A., Busby S. J. Mutational analysis of the nucleotide sequence at the FNR-dependent nirB promoter in Escherichia coli. Nucleic Acids Res. 1989 Jan 11;17(1):135–145. doi: 10.1093/nar/17.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jayaraman P. S., Peakman T. C., Busby S. J., Quincey R. V., Cole J. A. Location and sequence of the promoter of the gene for the NADH-dependent nitrite reductase of Escherichia coli and its regulation by oxygen, the Fnr protein and nitrite. J Mol Biol. 1987 Aug 20;196(4):781–788. doi: 10.1016/0022-2836(87)90404-9. [DOI] [PubMed] [Google Scholar]
- Katada T., Tamura M., Ui M. The A protomer of islet-activating protein, pertussis toxin, as an active peptide catalyzing ADP-ribosylation of a membrane protein. Arch Biochem Biophys. 1983 Jul 1;224(1):290–298. doi: 10.1016/0003-9861(83)90212-6. [DOI] [PubMed] [Google Scholar]
- Kenimer J. G., Kim K. J., Probst P. G., Manclark C. R., Burstyn D. G., Cowell J. L. Monoclonal antibodies to pertussis toxin: utilization as probes of toxin function. Hybridoma. 1989 Feb;8(1):37–51. doi: 10.1089/hyb.1989.8.37. [DOI] [PubMed] [Google Scholar]
- Khan C. M., Villarreal-Ramos B., Pierce R. J., Demarco de Hormaeche R., McNeill H., Ali T., Chatfield S., Capron A., Dougan G., Hormaeche C. E. Construction, expression, and immunogenicity of multiple tandem copies of the Schistosoma mansoni peptide 115-131 of the P28 glutathione S-transferase expressed as C-terminal fusions to tetanus toxin fragment C in a live aro-attenuated vaccine strain of Salmonella. J Immunol. 1994 Dec 15;153(12):5634–5642. [PubMed] [Google Scholar]
- Kimura M. Japanese clinical experiences with acellular pertussis vaccines. Dev Biol Stand. 1991;73:5–9. [PubMed] [Google Scholar]
- Locht C., Keith J. M. Pertussis toxin gene: nucleotide sequence and genetic organization. Science. 1986 Jun 6;232(4755):1258–1264. doi: 10.1126/science.3704651. [DOI] [PubMed] [Google Scholar]
- Nencioni L., Pizza M., Bugnoli M., De Magistris T., Di Tommaso A., Giovannoni F., Manetti R., Marsili I., Matteucci G., Nucci D. Characterization of genetically inactivated pertussis toxin mutants: candidates for a new vaccine against whooping cough. Infect Immun. 1990 May;58(5):1308–1315. doi: 10.1128/iai.58.5.1308-1315.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orr N., Robin G., Cohen D., Arnon R., Lowell G. H. Immunogenicity and efficacy of oral or intranasal Shigella flexneri 2a and Shigella sonnei proteosome-lipopolysaccharide vaccines in animal models. Infect Immun. 1993 Jun;61(6):2390–2395. doi: 10.1128/iai.61.6.2390-2395.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oxer M. D., Bentley C. M., Doyle J. G., Peakman T. C., Charles I. G., Makoff A. J. High level heterologous expression in E. coli using the anaerobically-activated nirB promoter. Nucleic Acids Res. 1991 Jun 11;19(11):2889–2892. doi: 10.1093/nar/19.11.2889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pittman M. The concept of pertussis as a toxin-mediated disease. Pediatr Infect Dis. 1984 Sep-Oct;3(5):467–486. doi: 10.1097/00006454-198409000-00019. [DOI] [PubMed] [Google Scholar]
- Pizza M., Covacci A., Bartoloni A., Perugini M., Nencioni L., De Magistris M. T., Villa L., Nucci D., Manetti R., Bugnoli M. Mutants of pertussis toxin suitable for vaccine development. Science. 1989 Oct 27;246(4929):497–500. doi: 10.1126/science.2683073. [DOI] [PubMed] [Google Scholar]
- Sato H., Ito A., Chiba J., Sato Y. Monoclonal antibody against pertussis toxin: effect on toxin activity and pertussis infections. Infect Immun. 1984 Nov;46(2):422–428. doi: 10.1128/iai.46.2.422-428.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato H., Sato Y., Ohishi I. Comparison of pertussis toxin (PT)-neutralizing activities and mouse-protective activities of anti-PT mouse monoclonal antibodies. Infect Immun. 1991 Oct;59(10):3832–3835. doi: 10.1128/iai.59.10.3832-3835.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato H., Sato Y. Protective activities in mice of monoclonal antibodies against pertussis toxin. Infect Immun. 1990 Oct;58(10):3369–3374. doi: 10.1128/iai.58.10.3369-3374.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shahin R., Leef M., Eldridge J., Hudson M., Gilley R. Adjuvanticity and protective immunity elicited by Bordetella pertussis antigens encapsulated in poly(DL-lactide-co-glycolide) microspheres. Infect Immun. 1995 Apr;63(4):1195–1200. doi: 10.1128/iai.63.4.1195-1200.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strugnell R., Dougan G., Chatfield S., Charles I., Fairweather N., Tite J., Li J. L., Beesley J., Roberts M. Characterization of a Salmonella typhimurium aro vaccine strain expressing the P.69 antigen of Bordetella pertussis. Infect Immun. 1992 Oct;60(10):3994–4002. doi: 10.1128/iai.60.10.3994-4002.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tacket C. O., Hone D. M., Losonsky G. A., Guers L., Edelman R., Levine M. M. Clinical acceptability and immunogenicity of CVD 908 Salmonella typhi vaccine strain. Vaccine. 1992;10(7):443–446. doi: 10.1016/0264-410x(92)90392-w. [DOI] [PubMed] [Google Scholar]
- Tamura M., Nogimori K., Murai S., Yajima M., Ito K., Katada T., Ui M., Ishii S. Subunit structure of islet-activating protein, pertussis toxin, in conformity with the A-B model. Biochemistry. 1982 Oct 26;21(22):5516–5522. doi: 10.1021/bi00265a021. [DOI] [PubMed] [Google Scholar]
- Tamura M., Nogimori K., Yajima M., Ase K., Ui M. A role of the B-oligomer moiety of islet-activating protein, pertussis toxin, in development of the biological effects on intact cells. J Biol Chem. 1983 Jun 10;258(11):6756–6761. [PubMed] [Google Scholar]
- Trollfors B., Taranger J., Lagergård T., Lind L., Sundh V., Zackrisson G., Lowe C. U., Blackwelder W., Robbins J. B. A placebo-controlled trial of a pertussis-toxoid vaccine. N Engl J Med. 1995 Oct 19;333(16):1045–1050. doi: 10.1056/NEJM199510193331604. [DOI] [PubMed] [Google Scholar]
- Walker M. J., Rohde M., Timmis K. N., Guzmán C. A. Specific lung mucosal and systemic immune responses after oral immunization of mice with Salmonella typhimurium aroA, Salmonella typhi Ty21a, and invasive Escherichia coli expressing recombinant pertussis toxin S1 subunit. Infect Immun. 1992 Oct;60(10):4260–4268. doi: 10.1128/iai.60.10.4260-4268.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss A. A., Hewlett E. L. Virulence factors of Bordetella pertussis. Annu Rev Microbiol. 1986;40:661–686. doi: 10.1146/annurev.mi.40.100186.003305. [DOI] [PubMed] [Google Scholar]