Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Oct;64(10):4249–4254. doi: 10.1128/iai.64.10.4249-4254.1996

Binding sites of salivary statherin for Porphyromonas gingivalis recombinant fimbrillin.

A Amano 1, K Kataoka 1, P A Raj 1, R J Genco 1, S Shizukuishi 1
PMCID: PMC174364  PMID: 8926096

Abstract

We investigated the binding sites of salivary statherin involved in the interaction with Porphyromonas gingivalis recombinant fimbrillin (r-Fim). Synthetic peptides representing statherin analogs were used to localize the binding domains of statherin. Peptide F4 (residues 29 to 43) significantly bound to r-Fim and inhibited r-Fim binding to statherin-coated hydroxyapatite beads. Successive peptides in which pairs of amino acid residues were deleted starting at the N terminus of peptide F4 were synthesized. Peptide N1 without Leu-29-Tyr-30 had significantly reduced direct binding and inhibition ability. The deletions of residues 31 to 40 had little effect on interaction with r-Fim. The tripeptide N6 representing Tyr-41-Thr-42-Phe-43 retained significant binding to r-Fim. Another set of peptides was synthesized by deleting individual amino acid residues from the C and N termini of peptide F4 to identify functional residues among the five putative functional residues 29, 30, and 41 to 43. Peptide C1 missing Phe-43 lost over 50% of its binding ability. Binding ability was gradually reduced with deletions from the peptides. Peptide C5 (amino acids 31 to 40) weakly affected direct binding and inhibition. Collectively, the results of this study suggests that Leu-29-Tyr-30 and Tyr-41-Thr-42-Phe-43 are important binding regions that mediate the binding of statherin to P. gingivalis fimbrillin.

Full Text

The Full Text of this article is available as a PDF (293.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amano A., Sharma A., Lee J. Y., Sojar H. T., Raj P. A., Genco R. J. Structural domains of Porphyromonas gingivalis recombinant fimbrillin that mediate binding to salivary proline-rich protein and statherin. Infect Immun. 1996 May;64(5):1631–1637. doi: 10.1128/iai.64.5.1631-1637.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amano A., Sojar H. T., Lee J. Y., Sharma A., Levine M. J., Genco R. J. Salivary receptors for recombinant fimbrillin of Porphyromonas gingivalis. Infect Immun. 1994 Aug;62(8):3372–3380. doi: 10.1128/iai.62.8.3372-3380.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clark W. B., Bammann L. L., Gibbons R. J. Comparative estimates of bacterial affinities and adsorption sites on hydroxyapatite surfaces. Infect Immun. 1978 Mar;19(3):846–853. doi: 10.1128/iai.19.3.846-853.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dahlén G. G. Black-pigmented gram-negative anaerobes in periodontitis. FEMS Immunol Med Microbiol. 1993 Mar;6(2-3):181–192. doi: 10.1111/j.1574-695X.1993.tb00323.x. [DOI] [PubMed] [Google Scholar]
  5. Genco R. J., Zambon J. J., Christersson L. A. The origin of periodontal infections. Adv Dent Res. 1988 Nov;2(2):245–259. doi: 10.1177/08959374880020020901. [DOI] [PubMed] [Google Scholar]
  6. Gibbons R. J., Hay D. I., Schlesinger D. H. Delineation of a segment of adsorbed salivary acidic proline-rich proteins which promotes adhesion of Streptococcus gordonii to apatitic surfaces. Infect Immun. 1991 Sep;59(9):2948–2954. doi: 10.1128/iai.59.9.2948-2954.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hamada N., Watanabe K., Sasakawa C., Yoshikawa M., Yoshimura F., Umemoto T. Construction and characterization of a fimA mutant of Porphyromonas gingivalis. Infect Immun. 1994 May;62(5):1696–1704. doi: 10.1128/iai.62.5.1696-1704.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Johnsson M., Levine M. J., Nancollas G. H. Hydroxyapatite binding domains in salivary proteins. Crit Rev Oral Biol Med. 1993;4(3-4):371–378. doi: 10.1177/10454411930040031601. [DOI] [PubMed] [Google Scholar]
  9. Lee J. Y., Sojar H. T., Bedi G. S., Genco R. J. Synthetic peptides analogous to the fimbrillin sequence inhibit adherence of Porphyromonas gingivalis. Infect Immun. 1992 Apr;60(4):1662–1670. doi: 10.1128/iai.60.4.1662-1670.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Malek R., Fisher J. G., Caleca A., Stinson M., van Oss C. J., Lee J. Y., Cho M. I., Genco R. J., Evans R. T., Dyer D. W. Inactivation of the Porphyromonas gingivalis fimA gene blocks periodontal damage in gnotobiotic rats. J Bacteriol. 1994 Feb;176(4):1052–1059. doi: 10.1128/jb.176.4.1052-1059.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Raj P. A., Johnsson M., Levine M. J., Nancollas G. H. Salivary statherin. Dependence on sequence, charge, hydrogen bonding potency, and helical conformation for adsorption to hydroxyapatite and inhibition of mineralization. J Biol Chem. 1992 Mar 25;267(9):5968–5976. [PubMed] [Google Scholar]
  12. Ramasubbu N., Reddy M. S., Bergey E. J., Haraszthy G. G., Soni S. D., Levine M. J. Large-scale purification and characterization of the major phosphoproteins and mucins of human submandibular-sublingual saliva. Biochem J. 1991 Dec 1;280(Pt 2):341–352. doi: 10.1042/bj2800341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ramasubbu N., Thomas L. M., Bhandary K. K., Levine M. J. Structural characteristics of human salivary statherin: a model for boundary lubrication at the enamel surface. Crit Rev Oral Biol Med. 1993;4(3-4):363–370. doi: 10.1177/10454411930040031501. [DOI] [PubMed] [Google Scholar]
  14. Sharma A., Sojar H. T., Lee J. Y., Genco R. J. Expression of a functional Porphyromonas gingivalis fimbrillin polypeptide in Escherichia coli: purification, physicochemical and immunochemical characterization, and binding characteristics. Infect Immun. 1993 Aug;61(8):3570–3573. doi: 10.1128/iai.61.8.3570-3573.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Slots J., Gibbons R. J. Attachment of Bacteroides melaninogenicus subsp. asaccharolyticus to oral surfaces and its possible role in colonization of the mouth and of periodontal pockets. Infect Immun. 1978 Jan;19(1):254–264. doi: 10.1128/iai.19.1.254-264.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sojar H. T., Lee J. Y., Bedi G. S., Cho M. I., Genco R. J. Purification, characterization and immunolocalization of fimbrial protein from Porphyromonas (bacteroides) gingivalis. Biochem Biophys Res Commun. 1991 Mar 15;175(2):713–719. doi: 10.1016/0006-291x(91)91624-l. [DOI] [PubMed] [Google Scholar]
  17. Sojar H. T., Lee J. Y., Genco R. J. Fibronectin binding domain of P. gingivalis fimbriae. Biochem Biophys Res Commun. 1995 Nov 22;216(3):785–792. doi: 10.1006/bbrc.1995.2690. [DOI] [PubMed] [Google Scholar]
  18. Strömberg N., Borén T., Carlén A., Olsson J. Salivary receptors for GalNAc beta-sensitive adherence of Actinomyces spp.: evidence for heterogeneous GalNAc beta and proline-rich protein receptor properties. Infect Immun. 1992 Aug;60(8):3278–3286. doi: 10.1128/iai.60.8.3278-3286.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Washington O. R., Deslauriers M., Stevens D. P., Lyford L. K., Haque S., Yan Y., Flood P. M. Generation and purification of recombinant fimbrillin from Porphyromonas (Bacteroides) gingivalis 381. Infect Immun. 1993 Mar;61(3):1040–1047. doi: 10.1128/iai.61.3.1040-1047.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Xie H., Gibbons R. J., Hay D. I. Adhesive properties of strains of Fusobacterium nucleatum of the subspecies nucleatum, vincentii and polymorphum. Oral Microbiol Immunol. 1991 Oct;6(5):257–263. doi: 10.1111/j.1399-302x.1991.tb00488.x. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES