Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Oct;64(10):4319–4323. doi: 10.1128/iai.64.10.4319-4323.1996

Genetic and physiological analysis of the lethal effect of L-(+)-lactate dehydrogenase deficiency in Streptococcus mutans: complementation by alcohol dehydrogenase from Zymomonas mobilis.

J D Hillman 1, A Chen 1, J L Snoep 1
PMCID: PMC174373  PMID: 8926105

Abstract

CH4ts is a previously isolated recombinant mutant of Streptococcus mutans NG8 which produces a thermolabile L-(+)-lactate dehydrogenase (LDH) activity. It does not grow at 42 degrees C under a variety of cultivation conditions. In this study, we show that a batch culture of CH4ts shifted from 30 to 42 degrees C underwent rapid cessation of growth and accelerated cell death. The mutant grew at 42 degrees C in continuous culture under glucose-limiting conditions. Under these conditions, lactate production was replaced by production of ethanol and, to a smaller extent, acetoin. The cloned Zymomonas mobilis gene for alcohol dehydrogenase II, placed under the control of the S. mutans spaP regulatory signals, complemented LDH deficiency. The alcohol dehydrogenase-complemented mutant grew as well or better than NG8 on a variety of carbon sources at 42 degrees C and produced significant amounts of ethanol in place of lactic acid. These results are in accord with other approaches indicating that S. mutans has other enzymatic activities, including pyruvate formate-lyase and pyruvate dehydrogenase, for pyruvate metabolism. However, at high glucose concentrations, the levels of activity of these enzymes are apparently insufficient to compensate for the absence of LDH.

Full Text

The Full Text of this article is available as a PDF (237.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbe K., Takahashi S., Yamada T. Involvement of oxygen-sensitive pyruvate formate-lyase in mixed-acid fermentation by Streptococcus mutans under strictly anaerobic conditions. J Bacteriol. 1982 Oct;152(1):175–182. doi: 10.1128/jb.152.1.175-182.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abhyankar S., Sandham H. J., Chan K. H. Serotype c Streptococcus mutans mutatable to lactate dehydrogenase deficiency. J Dent Res. 1985 Nov;64(11):1267–1271. doi: 10.1177/00220345850640110201. [DOI] [PubMed] [Google Scholar]
  3. Brown A. T., Wittenberger C. L. Fructose-1,6-diphosphate-dependent lactate dehydrogenase from a cariogenic streptococcus: purification and regulatory properties. J Bacteriol. 1972 May;110(2):604–615. doi: 10.1128/jb.110.2.604-615.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carlsson J. Chemically defined medium for growth of Streptococcus sanquis. Caries Res. 1970;4(4):297–304. doi: 10.1159/000259652. [DOI] [PubMed] [Google Scholar]
  5. Carlsson J., Kujala U., Edlund M. B. Pyruvate dehydrogenase activity in Streptococcus mutans. Infect Immun. 1985 Sep;49(3):674–678. doi: 10.1128/iai.49.3.674-678.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen A., Hillman J. D., Duncan M. L-(+)-lactate dehydrogenase deficiency is lethal in Streptococcus mutans. J Bacteriol. 1994 Mar;176(5):1542–1545. doi: 10.1128/jb.176.5.1542-1545.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Conway T., Sewell G. W., Osman Y. A., Ingram L. O. Cloning and sequencing of the alcohol dehydrogenase II gene from Zymomonas mobilis. J Bacteriol. 1987 Jun;169(6):2591–2597. doi: 10.1128/jb.169.6.2591-2597.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Drucker D. B., Melville T. H. Fermentation end-products of cariogenic and non-cariogenic streptococci. Arch Oral Biol. 1968 May;13(5):565–570. doi: 10.1016/0003-9969(68)90117-9. [DOI] [PubMed] [Google Scholar]
  9. Hamilton I. R., Lebtag H. Lactose metabolism by Streptococcus mutans: evidence for induction of the tagatose 6-phosphate pathway. J Bacteriol. 1979 Dec;140(3):1102–1104. doi: 10.1128/jb.140.3.1102-1104.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Higuchi M. The effect of oxygen on the growth and mannitol fermentation of Streptococcus mutants. J Gen Microbiol. 1984 Jul;130(7):1819–1826. doi: 10.1099/00221287-130-7-1819. [DOI] [PubMed] [Google Scholar]
  11. Hillman J. D., Andrews S. W., Dzuback A. L. Acetoin production by wild-type strains and a lactate dehydrogenase-deficient mutant of Streptococcus mutans. Infect Immun. 1987 Jun;55(6):1399–1402. doi: 10.1128/iai.55.6.1399-1402.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hillman J. D., Chen A., Duncan M., Lee S. W. Evidence that L-(+)-lactate dehydrogenase deficiency is lethal in Streptococcus mutans. Infect Immun. 1994 Jan;62(1):60–64. doi: 10.1128/iai.62.1.60-64.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hillman J. D., Dzuback A. L., Andrews S. W. Colonization of the human oral cavity by a Streptococcus mutans mutant producing increased bacteriocin. J Dent Res. 1987 Jun;66(6):1092–1094. doi: 10.1177/00220345870660060101. [DOI] [PubMed] [Google Scholar]
  14. Johnson C. P., Gross S. M., Hillman J. D. Cariogenic potential in vitro in man and in vivo in the rat of lactate dehydrogenase mutants of Streptococcus mutans. Arch Oral Biol. 1980;25(11-12):707–713. doi: 10.1016/0003-9969(80)90124-7. [DOI] [PubMed] [Google Scholar]
  15. Lee S. F., Progulske-Fox A., Bleiweis A. S. Molecular cloning and expression of a Streptococcus mutans major surface protein antigen, P1 (I/II), in Escherichia coli. Infect Immun. 1988 Aug;56(8):2114–2119. doi: 10.1128/iai.56.8.2114-2119.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lee S. F., Progulske-Fox A., Erdos G. W., Piacentini D. A., Ayakawa G. Y., Crowley P. J., Bleiweis A. S. Construction and characterization of isogenic mutants of Streptococcus mutans deficient in major surface protein antigen P1 (I/II). Infect Immun. 1989 Nov;57(11):3306–3313. doi: 10.1128/iai.57.11.3306-3313.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Neale A. D., Scopes R. K., Kelly J. M., Wettenhall R. E. The two alcohol dehydrogenases of Zymomonas mobilis. Purification by differential dye ligand chromatography, molecular characterisation and physiological roles. Eur J Biochem. 1986 Jan 2;154(1):119–124. doi: 10.1111/j.1432-1033.1986.tb09366.x. [DOI] [PubMed] [Google Scholar]
  18. Perry D., Kuramitsu H. K. Genetic transformation of Streptococcus mutans. Infect Immun. 1981 Jun;32(3):1295–1297. doi: 10.1128/iai.32.3.1295-1297.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Takahashi S., Abbe K., Yamada T. Purification of pyruvate formate-lyase from Streptococcus mutans and its regulatory properties. J Bacteriol. 1982 Mar;149(3):1034–1040. doi: 10.1128/jb.149.3.1034-1040.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tanzer J. M., Krichevsky M. I., Keyes P. H. The metabolic fate of glucose catabolized by a washed stationary phase caries-conducive streptococcus. Caries Res. 1969;3(2):167–177. doi: 10.1159/000259580. [DOI] [PubMed] [Google Scholar]
  21. Tobian J. A., Cline M. L., Macrina F. L. Characterization and expression of a cloned tetracycline resistance determinant from the chromosome of Streptococcus mutans. J Bacteriol. 1984 Nov;160(2):556–563. doi: 10.1128/jb.160.2.556-563.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES