Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Oct;64(10):4330–4338. doi: 10.1128/iai.64.10.4330-4338.1996

CD4-mediated and CD8-mediated cytotoxic and proliferative immune responses to Toxoplasma gondii in seropositive humans.

M B Purner 1, R L Berens 1, P B Nash 1, A van Linden 1, E Ross 1, C Kruse 1, E C Krug 1, T J Curiel 1
PMCID: PMC174375  PMID: 8926107

Abstract

Both CD4+ and CD8+ cytotoxic T lymphocytes (CTL) are part of the human immune response to Toxoplasma gondii infection. To further our understanding of Toxoplasma immunity, we investigated factors influencing stimulation of CD4+ or CD8+ human T. gondii-specific immune cells. Both antigen-pulsed and Toxoplasma-infected antigen-presenting cells (APC) induced cell proliferation. Toxoplasma-infected APC elicited strong proliferation of CD4+ cells, but little or no proliferation of CD8+ cells, unless high antigen loads were used. Toxoplasma-infected APC stimulated specific cytotoxicity poorly or not at all, owing to death of stimulated cultures, whereas antigen-pulsed APC strongly elicited specific cytotoxicity. Cytotoxicity elicited by either type of APC resided exclusively in CD4+ T cells in polyclonal cultures. Thus, Toxoplasma-infected APC elicited stronger CD4-mediated than CD8-mediated cell proliferation and generated CD4+ CTL more readily than CD8+ CTL. Nonetheless, specific CD8+ memory cells were demonstrated, and rare CD8+ Toxoplasma-specific CTL were subcloned. Fixed Toxoplasma-infected APC (which induce CD8+ CTL) also elicited cell proliferation, but polyclonal cultures stimulated with these infected APC did not die. Unfixed Toxoplasma-infected APC strongly inhibited phytohemagglutinin-induced cell proliferation, whereas fixed APC did not. These data suggested that infected APC were inhibitory or lethal to some immune cells. Further investigations into interactions between immune cells and Toxoplasma-infected cells likely will help elucidate factors involved in the immunopathogenesis of Toxoplasma infection. As other intracellular parasites, including Plasmodium spp. and Leishmania spp., also elicit CD4+ CTL, such work may help establish paradigms governing immunity to intracellular parasites.

Full Text

The Full Text of this article is available as a PDF (326.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abi-Hanna D., Wakefield D., Watkins S. HLA antigens in ocular tissues. I. In vivo expression in human eyes. Transplantation. 1988 Mar;45(3):610–613. doi: 10.1097/00007890-198803000-00021. [DOI] [PubMed] [Google Scholar]
  2. Achim C. L., Morey M. K., Wiley C. A. Expression of major histocompatibility complex and HIV antigens within the brains of AIDS patients. AIDS. 1991 May;5(5):535–541. doi: 10.1097/00002030-199105000-00009. [DOI] [PubMed] [Google Scholar]
  3. Aosai F., Yang T. H., Ueda M., Yano A. Isolation of naturally processed peptides from a Toxoplasma gondii-infected human B lymphoma cell line that are recognized by cytotoxic T lymphocytes. J Parasitol. 1994 Apr;80(2):260–266. [PubMed] [Google Scholar]
  4. Boom W. H., Wallis R. S., Chervenak K. A. Human Mycobacterium tuberculosis-reactive CD4+ T-cell clones: heterogeneity in antigen recognition, cytokine production, and cytotoxicity for mononuclear phagocytes. Infect Immun. 1991 Aug;59(8):2737–2743. doi: 10.1128/iai.59.8.2737-2743.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Britt R. H., Enzmann D. R., Remington J. S. Intracranial infection in cardiac transplant recipients. Ann Neurol. 1981 Feb;9(2):107–119. doi: 10.1002/ana.410090203. [DOI] [PubMed] [Google Scholar]
  6. Brown C. R., McLeod R. Class I MHC genes and CD8+ T cells determine cyst number in Toxoplasma gondii infection. J Immunol. 1990 Nov 15;145(10):3438–3441. [PubMed] [Google Scholar]
  7. Canessa A., Pistoia V., Roncella S., Merli A., Melioli G., Terragna A., Ferrarini M. An in vitro model for Toxoplasma infection in man. Interaction between CD4+ monoclonal T cells and macrophages results in killing of trophozoites. J Immunol. 1988 May 15;140(10):3580–3588. [PubMed] [Google Scholar]
  8. Curiel T. J., Krug E. C., Purner M. B., Poignard P., Berens R. L. Cloned human CD4+ cytotoxic T lymphocytes specific for Toxoplasma gondii lyse tachyzoite-infected target cells. J Immunol. 1993 Aug 15;151(4):2024–2031. [PubMed] [Google Scholar]
  9. Curiel T. J., Wong J. T., Gorczyca P. F., Schooley R. T., Walker B. D. CD4+ human immunodeficiency virus type 1 (HIV-1) envelope-specific cytotoxic T lymphocytes derived from the peripheral blood cells of an HIV-1-infected individual. AIDS Res Hum Retroviruses. 1993 Jan;9(1):61–68. doi: 10.1089/aid.1993.9.61. [DOI] [PubMed] [Google Scholar]
  10. Denkers E. Y., Caspar P., Sher A. Toxoplasma gondii possesses a superantigen activity that selectively expands murine T cell receptor V beta 5-bearing CD8+ lymphocytes. J Exp Med. 1994 Sep 1;180(3):985–994. doi: 10.1084/jem.180.3.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gavin M. A., Gilbert M. J., Riddell S. R., Greenberg P. D., Bevan M. J. Alkali hydrolysis of recombinant proteins allows for the rapid identification of class I MHC-restricted CTL epitopes. J Immunol. 1993 Oct 15;151(8):3971–3980. [PubMed] [Google Scholar]
  12. Gazzinelli R. T., Hakim F. T., Hieny S., Shearer G. M., Sher A. Synergistic role of CD4+ and CD8+ T lymphocytes in IFN-gamma production and protective immunity induced by an attenuated Toxoplasma gondii vaccine. J Immunol. 1991 Jan 1;146(1):286–292. [PubMed] [Google Scholar]
  13. Gazzinelli R. T., Wysocka M., Hayashi S., Denkers E. Y., Hieny S., Caspar P., Trinchieri G., Sher A. Parasite-induced IL-12 stimulates early IFN-gamma synthesis and resistance during acute infection with Toxoplasma gondii. J Immunol. 1994 Sep 15;153(6):2533–2543. [PubMed] [Google Scholar]
  14. Gooding L. R. Virus proteins that counteract host immune defenses. Cell. 1992 Oct 2;71(1):5–7. doi: 10.1016/0092-8674(92)90259-f. [DOI] [PubMed] [Google Scholar]
  15. Grant I. H., Gold J. W., Rosenblum M., Niedzwiecki D., Armstrong D. Toxoplasma gondii serology in HIV-infected patients: the development of central nervous system toxoplasmosis in AIDS. AIDS. 1990 Jun;4(6):519–521. [PubMed] [Google Scholar]
  16. Hakim F. T., Gazzinelli R. T., Denkers E., Hieny S., Shearer G. M., Sher A. CD8+ T cells from mice vaccinated against Toxoplasma gondii are cytotoxic for parasite-infected or antigen-pulsed host cells. J Immunol. 1991 Oct 1;147(7):2310–2316. [PubMed] [Google Scholar]
  17. Jaraquemada D., Marti M., Long E. O. An endogenous processing pathway in vaccinia virus-infected cells for presentation of cytoplasmic antigens to class II-restricted T cells. J Exp Med. 1990 Sep 1;172(3):947–954. doi: 10.1084/jem.172.3.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kasper L. H., Khan I. A., Ely K. H., Buelow R., Boothroyd J. C. Antigen-specific (p30) mouse CD8+ T cells are cytotoxic against Toxoplasma gondii-infected peritoneal macrophages. J Immunol. 1992 Mar 1;148(5):1493–1498. [PubMed] [Google Scholar]
  19. Khan I. A., Ely K. H., Kasper L. H. A purified parasite antigen (p30) mediates CD8+ T cell immunity against fatal Toxoplasma gondii infection in mice. J Immunol. 1991 Nov 15;147(10):3501–3506. [PubMed] [Google Scholar]
  20. Khan I. A., Smith K. A., Kasper L. H. Induction of antigen-specific human cytotoxic T cells by Toxoplasma gondii. J Clin Invest. 1990 Jun;85(6):1879–1886. doi: 10.1172/JCI114649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Krug E. C., Marr J. J., Berens R. L. Purine metabolism in Toxoplasma gondii. J Biol Chem. 1989 Jun 25;264(18):10601–10607. [PubMed] [Google Scholar]
  22. Lubaki M. N., Egan M. A., Siliciano R. F., Weinhold K. J., Bollinger R. C. A novel method for detection and ex vivo expansion of HIV type 1-specific cytolytic T lymphocytes. AIDS Res Hum Retroviruses. 1994 Nov;10(11):1427–1431. doi: 10.1089/aid.1994.10.1427. [DOI] [PubMed] [Google Scholar]
  23. Malnati M. S., Marti M., LaVaute T., Jaraquemada D., Biddison W., DeMars R., Long E. O. Processing pathways for presentation of cytosolic antigen to MHC class II-restricted T cells. Nature. 1992 Jun 25;357(6380):702–704. doi: 10.1038/357702a0. [DOI] [PubMed] [Google Scholar]
  24. McCabe R., Remington J. S. Toxoplasmosis: the time has come. N Engl J Med. 1988 Feb 4;318(5):313–315. doi: 10.1056/NEJM198802043180509. [DOI] [PubMed] [Google Scholar]
  25. McFarland E. J., Curiel T. J., Schoen D. J., Rosandich M. E., Schooley R. T., Kuritzkes D. R. Cytotoxic T lymphocyte lines specific for human immunodeficiency virus type 1 Gag and reverse transcriptase derived from a vertically infected child. J Infect Dis. 1993 Mar;167(3):719–723. doi: 10.1093/infdis/167.3.719. [DOI] [PubMed] [Google Scholar]
  26. McGurn M., Boon T., Louis J. A., Titus R. G. Leishmania major: nature of immunity induced by immunization with a mutagenized avirulent clone of the parasite in mice. Exp Parasitol. 1990 Jul;71(1):81–89. doi: 10.1016/0014-4894(90)90010-a. [DOI] [PubMed] [Google Scholar]
  27. Miller N. L., Frenkel J. K., Dubey J. P. Oral infections with Toxoplasma cysts and oocysts in felines, other mammals, and in birds. J Parasitol. 1972 Oct;58(5):928–937. [PubMed] [Google Scholar]
  28. Montoya J. G., Lowe K. E., Clayberger C., Moody D., Do D., Remington J. S., Talib S., Subauste C. S. Human CD4+ and CD8+ T lymphocytes are both cytotoxic to Toxoplasma gondii-infected cells. Infect Immun. 1996 Jan;64(1):176–181. doi: 10.1128/iai.64.1.176-181.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Navia B. A., Petito C. K., Gold J. W., Cho E. S., Jordan B. D., Price R. W. Cerebral toxoplasmosis complicating the acquired immune deficiency syndrome: clinical and neuropathological findings in 27 patients. Ann Neurol. 1986 Mar;19(3):224–238. doi: 10.1002/ana.410190303. [DOI] [PubMed] [Google Scholar]
  30. Pantaleo G., Koenig S., Baseler M., Lane H. C., Fauci A. S. Defective clonogenic potential of CD8+ T lymphocytes in patients with AIDS. Expansion in vivo of a nonclonogenic CD3+CD8+DR+CD25- T cell population. J Immunol. 1990 Mar 1;144(5):1696–1704. [PubMed] [Google Scholar]
  31. Pedrol E., González-Clemente J. M., Gatell J. M., Mallolas J., Miró J. M., Graus F., Alvarez R., Mercader J. M., Berenguer J., Jiménez de Anta M. T. Central nervous system toxoplasmosis in AIDS patients: efficacy of an intermittent maintenance therapy. AIDS. 1990 Jun;4(6):511–517. doi: 10.1097/00002030-199006000-00003. [DOI] [PubMed] [Google Scholar]
  32. Purner M. B., Krug E. C., Nash P., Cook D. R., Berens R. L., Curiel T. J. Cross-reactivity of human Toxoplasma-specific T cells: implications for development of a potential immunotherapeutic or vaccine. J Infect Dis. 1995 Apr;171(4):984–991. doi: 10.1093/infdis/171.4.984. [DOI] [PubMed] [Google Scholar]
  33. Remington J. S., Cavanaugh E. N. Isolation of the encysted form of Toxoplasma gondii from human skeletal muscle and brain. N Engl J Med. 1965 Dec 9;273(24):1308–1310. doi: 10.1056/NEJM196512092732404. [DOI] [PubMed] [Google Scholar]
  34. Siegel S. E., Lunde M. N., Gelderman A. H., Halterman R. H., Brown J. A., Levine A. S., Graw R. G., Jr Transmission of toxoplasmosis by leukocyte transfusion. Blood. 1971 Apr;37(4):388–394. [PubMed] [Google Scholar]
  35. Sobel R. A., Ames M. B. Major histocompatibility complex molecule expression in the human central nervous system: immunohistochemical analysis of 40 patients. J Neuropathol Exp Neurol. 1988 Jan;47(1):19–28. doi: 10.1097/00005072-198801000-00003. [DOI] [PubMed] [Google Scholar]
  36. Suzuki Y., Remington J. S. Dual regulation of resistance against Toxoplasma gondii infection by Lyt-2+ and Lyt-1+, L3T4+ T cells in mice. J Immunol. 1988 Jun 1;140(11):3943–3946. [PubMed] [Google Scholar]
  37. Tarleton R. L. Trypanosoma cruzi-induced suppression of IL-2 production. II. Evidence for a role for suppressor cells. J Immunol. 1988 Apr 15;140(8):2769–2773. [PubMed] [Google Scholar]
  38. Tsuji M., Romero P., Nussenzweig R. S., Zavala F. CD4+ cytolytic T cell clone confers protection against murine malaria. J Exp Med. 1990 Nov 1;172(5):1353–1357. doi: 10.1084/jem.172.5.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Turcotte R. A suppressor B lymphocyte inhibiting IL-2 consumption in spleen cell cultures from Mycobacterium bovis BCG-infected mice. Immunology. 1987 Nov;62(3):439–444. [PMC free article] [PubMed] [Google Scholar]
  40. Vinetz J. M., Kumar S., Good M. F., Fowlkes B. J., Berzofsky J. A., Miller L. H. Adoptive transfer of CD8+ T cells from immune animals does not transfer immunity to blood stage Plasmodium yoelii malaria. J Immunol. 1990 Feb 1;144(3):1069–1074. [PubMed] [Google Scholar]
  41. Wagner E., Zatloukal K., Cotten M., Kirlappos H., Mechtler K., Curiel D. T., Birnstiel M. L. Coupling of adenovirus to transferrin-polylysine/DNA complexes greatly enhances receptor-mediated gene delivery and expression of transfected genes. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6099–6103. doi: 10.1073/pnas.89.13.6099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wong J. T., Colvin R. B. Bi-specific monoclonal antibodies: selective binding and complement fixation to cells that express two different surface antigens. J Immunol. 1987 Aug 15;139(4):1369–1374. [PubMed] [Google Scholar]
  43. Wong J. T., Colvin R. B. Selective reduction and proliferation of the CD4+ and CD8+ T cell subsets with bispecific monoclonal antibodies: evidence for inter-T cell-mediated cytolysis. Clin Immunol Immunopathol. 1991 Feb;58(2):236–250. doi: 10.1016/0090-1229(91)90139-2. [DOI] [PubMed] [Google Scholar]
  44. Yang T. H., Aosai F., Norose K., Ueda M., Yano A. Enhanced cytotoxicity of IFN-gamma-producing CD4+ cytotoxic T lymphocytes specific for T. gondii-infected human melanoma cells. J Immunol. 1995 Jan 1;154(1):290–298. [PubMed] [Google Scholar]
  45. Yano A., Aosai F., Ohta M., Hasekura H., Sugane K., Hayashi S. Antigen presentation by Toxoplasma gondii-infected cells to CD4+ proliferative T cells and CD8+ cytotoxic cells. J Parasitol. 1989 Jun;75(3):411–416. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES