Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Oct;64(10):4339–4344. doi: 10.1128/iai.64.10.4339-4344.1996

Prolonged and preferential production of polymeric immunoglobulin A in response to Streptococcus pneumoniae capsular polysaccharides.

S Johnson 1, N L Opstad 1, J M Douglas Jr 1, E N Janoff 1
PMCID: PMC174376  PMID: 8926108

Abstract

Streptococcus pneumoniae is an invasive mucosal pathogen for which host defense is dependent on capsular polysaccharide-specific antibody. Capsule-specific immunoglobulin G (IgG), IgM, and IgA are produced following pneumococcal vaccination and infection. Serum IgA has two molecular forms, polymeric and monomeric. These forms may modulate the avidity of antigen binding and evolve over time as the immune response matures. Therefore, we sequentially characterized the molecular forms of serum IgA to three serotypes of pneumococcal capsular polysaccharides (types 8, 12F, and 14) after pneumococcal vaccination and after natural infection with type 14 S. pneumoniae. Although typically the form of IgA in antigen-specific systemic responses to protein antigens is predominantly polymeric in sera of patients shortly after exposure and shifts to the monomeric form in sera obtained several weeks later, the form of IgA in response to each pneumococcal capsular polysaccharide remained predominantly polymeric 1 month after natural infection and up to I year following vaccination. In contrast, IgA to pneumococcal cell wall polysaccharide was both polymeric and monomeric. Moreover, the form of IgA in response to polyribosyl-ribitol-phosphate (PRP), the capsular polysaccharide of Haemophilus influenzae type b, was predominantly monomeric in the sera of 8 of 10 subjects tested 1 to 3 months after vaccination with either PRP alone or the diphtheria toxoid conjugate of PRP. We conclude that systemic responses to pneumococcal capsular polysaccharides are distinct in the production of predominantly polymeric IgA over time. The persistence of polymeric IgA may facilitate binding and clearance of pneumococci from the systemic circulation or reflect limited maturation of the immune response to pneumococcal capsular polysaccharides.

Full Text

The Full Text of this article is available as a PDF (220.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birkhead G., Janoff E. N., Vogt R. L., Smith P. D. Elevated levels of immunoglobulin A to Giardia lamblia during a waterborne outbreak of gastroenteritis. J Clin Microbiol. 1989 Aug;27(8):1707–1710. doi: 10.1128/jcm.27.8.1707-1710.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blaser M. J., Duncan D. J. Human serum antibody response to Campylobacter jejuni infection as measured in an enzyme-linked immunosorbent assay. Infect Immun. 1984 May;44(2):292–298. doi: 10.1128/iai.44.2.292-298.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown T. A., Murphy B. R., Radl J., Haaijman J. J., Mestecky J. Subclass distribution and molecular form of immunoglobulin A hemagglutinin antibodies in sera and nasal secretions after experimental secondary infection with influenza A virus in humans. J Clin Microbiol. 1985 Aug;22(2):259–264. doi: 10.1128/jcm.22.2.259-264.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Conley M. E., Delacroix D. L. Intravascular and mucosal immunoglobulin A: two separate but related systems of immune defense? Ann Intern Med. 1987 Jun;106(6):892–899. doi: 10.7326/0003-4819-106-6-892. [DOI] [PubMed] [Google Scholar]
  5. Delacroix D. L., Dehennin J. P., Vaerman J. P. Influence of molecular size of IgA on its immunoassay by various techniques. II. Solid-phase radioimmunoassays. J Immunol Methods. 1982;48(3):327–337. doi: 10.1016/0022-1759(82)90333-7. [DOI] [PubMed] [Google Scholar]
  6. Hiemstra P. S., Biewenga J., Gorter A., Stuurman M. E., Faber A., van Es L. A., Daha M. R. Activation of complement by human serum IgA, secretory IgA and IgA1 fragments. Mol Immunol. 1988 Jun;25(6):527–533. doi: 10.1016/0161-5890(88)90074-0. [DOI] [PubMed] [Google Scholar]
  7. Hiemstra P. S., Gorter A., Stuurman M. E., Van Es L. A., Daha M. R. Activation of the alternative pathway of complement by human serum IgA. Eur J Immunol. 1987 Mar;17(3):321–326. doi: 10.1002/eji.1830170304. [DOI] [PubMed] [Google Scholar]
  8. Janoff E. N., Smith P. D., Blaser M. J. Acute antibody responses to Giardia lamblia are depressed in patients with AIDS. J Infect Dis. 1988 Apr;157(4):798–804. doi: 10.1093/infdis/157.4.798. [DOI] [PubMed] [Google Scholar]
  9. Jarvis G. A., Griffiss J. M. Human IgA1 blockade of IgG-initiated lysis of Neisseria meningitidis is a function of antigen-binding fragment binding to the polysaccharide capsule. J Immunol. 1991 Sep 15;147(6):1962–1967. [PubMed] [Google Scholar]
  10. Jarvis G. A., Griffiss J. M. Human IgA1 initiates complement-mediated killing of Neisseria meningitidis. J Immunol. 1989 Sep 1;143(5):1703–1709. [PubMed] [Google Scholar]
  11. Johnson S., Sypura W. D., Gerding D. N., Ewing S. L., Janoff E. N. Selective neutralization of a bacterial enterotoxin by serum immunoglobulin A in response to mucosal disease. Infect Immun. 1995 Aug;63(8):3166–3173. doi: 10.1128/iai.63.8.3166-3173.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kaetzel C. S., Robinson J. K., Chintalacharuvu K. R., Vaerman J. P., Lamm M. E. The polymeric immunoglobulin receptor (secretory component) mediates transport of immune complexes across epithelial cells: a local defense function for IgA. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8796–8800. doi: 10.1073/pnas.88.19.8796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kaplan M. E., Dalmasso A. P., Woodson M. Complement-dependent opsonization of incompatible erythrocytes by human secretory IgA. J Immunol. 1972 Jan;108(1):275–278. [PubMed] [Google Scholar]
  14. Kutteh W. H., Koopman W. J., Conley M. E., Egan M. L., Mestecky J. Production of predominantly polymeric IgA by human peripheral blood lymphocytes stimulated in vitro with mitogens. J Exp Med. 1980 Nov 1;152(5):1424–1429. doi: 10.1084/jem.152.5.1424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lee C. J., Banks S. D., Li J. P. Virulence, immunity, and vaccine related to Streptococcus pneumoniae. Crit Rev Microbiol. 1991;18(2):89–114. doi: 10.3109/10408419109113510. [DOI] [PubMed] [Google Scholar]
  16. Lue C., Tarkowski A., Mestecky J. Systemic immunization with pneumococcal polysaccharide vaccine induces a predominant IgA2 response of peripheral blood lymphocytes and increases of both serum and secretory anti-pneumococcal antibodies. J Immunol. 1988 Jun 1;140(11):3793–3800. [PubMed] [Google Scholar]
  17. Mascart-Lemone F. O., Duchateau J. R., Oosterom J., Butzler J. P., Delacroix D. L. Kinetics of anti-Campylobacter jejuni monomeric and polymeric immunoglobulin A1 and A2 responses in serum during acute enteritis. J Clin Microbiol. 1987 Jul;25(7):1253–1257. doi: 10.1128/jcm.25.7.1253-1257.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mascart-Lemone F., Carlsson B., Jalil F., Hahn-Zoric M., Duchateau J., Hanson L. A. Polymeric and monomeric IgA response in serum and milk after parenteral cholera and oral typhoid vaccination. Scand J Immunol. 1988 Oct;28(4):443–448. doi: 10.1111/j.1365-3083.1988.tb01474.x. [DOI] [PubMed] [Google Scholar]
  19. Mascart-Lemone F., Duchateau J., Conley M. E., Delacroix D. L. A polymeric IgA response in serum can be produced by parenteral immunization. Immunology. 1987 Aug;61(4):409–413. [PMC free article] [PubMed] [Google Scholar]
  20. Musher D. M., Luchi M. J., Watson D. A., Hamilton R., Baughn R. E. Pneumococcal polysaccharide vaccine in young adults and older bronchitics: determination of IgG responses by ELISA and the effect of adsorption of serum with non-type-specific cell wall polysaccharide. J Infect Dis. 1990 Apr;161(4):728–735. doi: 10.1093/infdis/161.4.728. [DOI] [PubMed] [Google Scholar]
  21. Negro Ponzi A., Merlino C., Angeretti A., Penna R. Virus-specific polymeric immunoglobulin A antibodies in serum from patients with rubella, measles, varicella, and herpes zoster virus infections. J Clin Microbiol. 1985 Oct;22(4):505–509. doi: 10.1128/jcm.22.4.505-509.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nikolova E. B., Russell M. W. Dual function of human IgA antibodies: inhibition of phagocytosis in circulating neutrophils and enhancement of responses in IL-8-stimulated cells. J Leukoc Biol. 1995 Jun;57(6):875–882. doi: 10.1002/jlb.57.6.875. [DOI] [PubMed] [Google Scholar]
  23. Robbins J. B., Austrian R., Lee C. J., Rastogi S. C., Schiffman G., Henrichsen J., Mäkelä P. H., Broome C. V., Facklam R. R., Tiesjema R. H. Considerations for formulating the second-generation pneumococcal capsular polysaccharide vaccine with emphasis on the cross-reactive types within groups. J Infect Dis. 1983 Dec;148(6):1136–1159. doi: 10.1093/infdis/148.6.1136. [DOI] [PubMed] [Google Scholar]
  24. Russell M. W., Brown T. A., Claflin J. L., Schroer K., Mestecky J. Immunoglobulin A-mediated hepatobiliary transport constitutes a natural pathway for disposing of bacterial antigens. Infect Immun. 1983 Dec;42(3):1041–1048. doi: 10.1128/iai.42.3.1041-1048.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Russell M. W., Reinholdt J., Kilian M. Anti-inflammatory activity of human IgA antibodies and their Fab alpha fragments: inhibition of IgG-mediated complement activation. Eur J Immunol. 1989 Dec;19(12):2243–2249. doi: 10.1002/eji.1830191210. [DOI] [PubMed] [Google Scholar]
  26. SCHROHENLOHER R. E., KUNKEL H. G., TOMASI T. B. ACTIVITY OF DISSOCIATED AND REASSOCIATED 19S ANTI-GAMMA-GLOBULINS. J Exp Med. 1964 Dec 1;120:1215–1229. doi: 10.1084/jem.120.6.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schaapherder A. F., Gooszen H. G., te Bulte M. T., Daha M. R. Human complement activation via the alternative pathway on porcine endothelium initiated by IgA antibodies. Transplantation. 1995 Aug 15;60(3):287–291. doi: 10.1097/00007890-199508000-00014. [DOI] [PubMed] [Google Scholar]
  28. Stein K. E. Thymus-independent and thymus-dependent responses to polysaccharide antigens. J Infect Dis. 1992 Jun;165 (Suppl 1):S49–S52. doi: 10.1093/infdis/165-supplement_1-s49. [DOI] [PubMed] [Google Scholar]
  29. Sørensen U. B., Henrichsen J. C-polysaccharide in a pneumococcal vaccine. Acta Pathol Microbiol Immunol Scand C. 1984 Dec;92(6):351–356. doi: 10.1111/j.1699-0463.1984.tb00099.x. [DOI] [PubMed] [Google Scholar]
  30. Tarkowski A., Lue C., Moldoveanu Z., Kiyono H., McGhee J. R., Mestecky J. Immunization of humans with polysaccharide vaccines induces systemic, predominantly polymeric IgA2-subclass antibody responses. J Immunol. 1990 May 15;144(10):3770–3778. [PubMed] [Google Scholar]
  31. Underdown B. J., Schiff J. M. Immunoglobulin A: strategic defense initiative at the mucosal surface. Annu Rev Immunol. 1986;4:389–417. doi: 10.1146/annurev.iy.04.040186.002133. [DOI] [PubMed] [Google Scholar]
  32. Weiss P. J., Wallace M. R., Oldfield E. C., 3rd, O'Brien J., Janoff E. N. Response of recent human immunodeficiency virus seroconverters to the pneumococcal polysaccharide vaccine and Haemophilus influenzae type b conjugate vaccine. J Infect Dis. 1995 May;171(5):1217–1222. doi: 10.1093/infdis/171.5.1217. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES