Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Oct;64(10):4378–4380. doi: 10.1128/iai.64.10.4378-4380.1996

The dsbB gene product is required for protease production by Burkholderia cepacia.

M Abe 1, T Nakazawa 1
PMCID: PMC174384  PMID: 8926116

Abstract

Burkholderia cepacia KF1, isolated from a pneumonia patient, produces a 37-kDa extracellular metalloprotease. A protease-deficient and lipase-proficient mutant, KFT1007, was complemented by a clone having an open reading frame coding for a 170-amino-acid polypeptide which showed significant homology to Escherichia coli DsbB. KFT1007, a presumed dsbB mutant, also failed to show motility, and both protease secretion and motility were restored by the introduction of the cloned dsbB gene of B. cepacia. The mutant KFT1007 excreted a 43-kDa polypeptide that is immunologically related to the 37-kDa mature protease. These results suggested that the dsbB mutant secretes a premature and catalytically inactive form of protease and that disulfide formation is required for the production of extracellular protease by B. cepacia.

Full Text

The Full Text of this article is available as a PDF (358.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe M., Nakazawa T. Characterization of hemolytic and antifungal substance, cepalycin, from Pseudomonas cepacia. Microbiol Immunol. 1994;38(1):1–9. doi: 10.1111/j.1348-0421.1994.tb01737.x. [DOI] [PubMed] [Google Scholar]
  2. Bally M., Filloux A., Akrim M., Ball G., Lazdunski A., Tommassen J. Protein secretion in Pseudomonas aeruginosa: characterization of seven xcp genes and processing of secretory apparatus components by prepilin peptidase. Mol Microbiol. 1992 May;6(9):1121–1131. doi: 10.1111/j.1365-2958.1992.tb01550.x. [DOI] [PubMed] [Google Scholar]
  3. Dailey F. E., Berg H. C. Mutants in disulfide bond formation that disrupt flagellar assembly in Escherichia coli. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1043–1047. doi: 10.1073/pnas.90.3.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Grant S. G., Jessee J., Bloom F. R., Hanahan D. Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4645–4649. doi: 10.1073/pnas.87.12.4645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hobson A. H., Buckley C. M., Aamand J. L., Jørgensen S. T., Diderichsen B., McConnell D. J. Activation of a bacterial lipase by its chaperone. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5682–5686. doi: 10.1073/pnas.90.12.5682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jander G., Martin N. L., Beckwith J. Two cysteines in each periplasmic domain of the membrane protein DsbB are required for its function in protein disulfide bond formation. EMBO J. 1994 Nov 1;13(21):5121–5127. doi: 10.1002/j.1460-2075.1994.tb06841.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kamitani S., Akiyama Y., Ito K. Identification and characterization of an Escherichia coli gene required for the formation of correctly folded alkaline phosphatase, a periplasmic enzyme. EMBO J. 1992 Jan;11(1):57–62. doi: 10.1002/j.1460-2075.1992.tb05027.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kato J., Chu L., Kitano K., DeVault J. D., Kimbara K., Chakrabarty A. M., Misra T. K. Nucleotide sequence of a regulatory region controlling alginate synthesis in Pseudomonas aeruginosa: characterization of the algR2 gene. Gene. 1989 Dec 7;84(1):31–38. doi: 10.1016/0378-1119(89)90136-4. [DOI] [PubMed] [Google Scholar]
  9. Kooi C., Cox A., Darling P., Sokol P. A. Neutralizing monoclonal antibodies to an extracellular Pseudomonas cepacia protease. Infect Immun. 1994 Jul;62(7):2811–2817. doi: 10.1128/iai.62.7.2811-2817.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. McKenney D., Allison D. G. Effects of growth rate and nutrient limitation on virulence factor production in Burkholderia cepacia. J Bacteriol. 1995 Jul;177(14):4140–4143. doi: 10.1128/jb.177.14.4140-4143.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McKevitt A. I., Bajaksouzian S., Klinger J. D., Woods D. E. Purification and characterization of an extracellular protease from Pseudomonas cepacia. Infect Immun. 1989 Mar;57(3):771–778. doi: 10.1128/iai.57.3.771-778.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Missiakas D., Georgopoulos C., Raina S. Identification and characterization of the Escherichia coli gene dsbB, whose product is involved in the formation of disulfide bonds in vivo. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7084–7088. doi: 10.1073/pnas.90.15.7084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nakazawa T., Yamada Y., Ishibashi M. Characterization of hemolysin in extracellular products of Pseudomonas cepacia. J Clin Microbiol. 1987 Feb;25(2):195–198. doi: 10.1128/jcm.25.2.195-198.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Peek J. A., Taylor R. K. Characterization of a periplasmic thiol:disulfide interchange protein required for the functional maturation of secreted virulence factors of Vibrio cholerae. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6210–6214. doi: 10.1073/pnas.89.13.6210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pugsley A. P. Translocation of a folded protein across the outer membrane in Escherichia coli. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12058–12062. doi: 10.1073/pnas.89.24.12058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rinderknecht H., Geokas M. C., Silverman P., Haverback B. J. A new ultrasensitive method for the determination of proteolytic activity. Clin Chim Acta. 1968 Aug;21(2):197–203. doi: 10.1016/0009-8981(68)90127-7. [DOI] [PubMed] [Google Scholar]
  18. Sajjan U. S., Sun L., Goldstein R., Forstner J. F. Cable (cbl) type II pili of cystic fibrosis-associated Burkholderia (Pseudomonas) cepacia: nucleotide sequence of the cblA major subunit pilin gene and novel morphology of the assembled appendage fibers. J Bacteriol. 1995 Feb;177(4):1030–1038. doi: 10.1128/jb.177.4.1030-1038.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sokol P. A., Lewis C. J., Dennis J. J. Isolation of a novel siderophore from Pseudomonas cepacia. J Med Microbiol. 1992 Mar;36(3):184–189. doi: 10.1099/00222615-36-3-184. [DOI] [PubMed] [Google Scholar]
  20. Strauch K. L., Beckwith J. An Escherichia coli mutation preventing degradation of abnormal periplasmic proteins. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1576–1580. doi: 10.1073/pnas.85.5.1576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Takigawa K., Fujita J., Negayama K., Yamagishi Y., Yamaji Y., Ouchi K., Yamada K., Abe M., Nakazawa T., Kawanishi K. Nosocomial outbreak of Pseudomonas cepacia respiratory infection in immunocompromised patients associated with contaminated nebulizer devices. Kansenshogaku Zasshi. 1993 Nov;67(11):1115–1125. doi: 10.11150/kansenshogakuzasshi1970.67.1115. [DOI] [PubMed] [Google Scholar]
  22. Tomb J. F. A periplasmic protein disulfide oxidoreductase is required for transformation of Haemophilus influenzae Rd. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10252–10256. doi: 10.1073/pnas.89.21.10252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yamagishi Y., Fujita J., Takigawa K., Miyawaki H., Takahara J., Yamadori I., Negayama K., Fujimaki K., Nakazawa T. Experimental pneumonia produced by clinical isolates of Pseudomonas cepacia in mice. Kansenshogaku Zasshi. 1993 Sep;67(9):816–822. doi: 10.11150/kansenshogakuzasshi1970.67.816. [DOI] [PubMed] [Google Scholar]
  24. Yamagishi Y., Fujita J., Takigawa K., Negayama K., Nakazawa T., Takahara J. Clinical features of Pseudomonas cepacia pneumonia in an epidemic among immunocompromised patients. Chest. 1993 Jun;103(6):1706–1709. doi: 10.1378/chest.103.6.1706. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES