Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Oct;64(10):4406–4408. doi: 10.1128/iai.64.10.4406-4408.1996

Ubiquitin-like epitopes associated with Candida albicans cell surface receptors.

P Sepulveda 1, J L Lopez-Ribot 1, D Gozalbo 1, A Cervera 1, J P Martinez 1, W L Chaffin 1
PMCID: PMC174390  PMID: 8926122

Abstract

We have recently reported the cloning of a Candida albicans polyubiquitin gene and the presence of ubiquitin in the cell wall of this fungus. The polyubiquitin cDNA clone was isolated because of its reactivity with antibodies generated against the candidal 37-kDa laminin-binding protein. In the present study, we have further investigated the relationship between ubiquitin and cell wall components displaying receptor-like activities, including the 37-kDa laminin receptor, the 58-kDa fibrinogen-binding mannoprotein, and the candidal C3d receptor. Two-dimensional electrophoretic analysis and immunoblot experiments with antibodies against ubiquitin and the individually purified receptor-like molecules confirmed that these cell surface components are ubiquitinated. In an enzyme-linked immunosorbent assay, polyclonal antisera to each receptor reacted with ubiquitin, thus demonstrating that the purified receptor preparations used as immunogens contained ubiquitin-like epitopes. It is proposed that ubiquitin may play a role in modulating the activity of these receptors and in the interaction of C. albicans cells with host structures.

Full Text

The Full Text of this article is available as a PDF (194.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey A., Wadsworth E., Calderone R. Adherence of Candida albicans to human buccal epithelial cells: host-induced protein synthesis and signaling events. Infect Immun. 1995 Feb;63(2):569–572. doi: 10.1128/iai.63.2.569-572.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Calderone R. A. Recognition between Candida albicans and host cells. Trends Microbiol. 1993 May;1(2):55–58. doi: 10.1016/0966-842x(93)90033-n. [DOI] [PubMed] [Google Scholar]
  3. Casanova M., Chaffin W. L. Cell wall glycoproteins of Candida albicans as released by different methods. J Gen Microbiol. 1991 May;137(5):1045–1051. doi: 10.1099/00221287-137-5-1045. [DOI] [PubMed] [Google Scholar]
  4. Casanova M., Lopez-Ribot J. L., Martinez J. P., Sentandreu R. Characterization of cell wall proteins from yeast and mycelial cells of Candida albicans by labelling with biotin: comparison with other techniques. Infect Immun. 1992 Nov;60(11):4898–4906. doi: 10.1128/iai.60.11.4898-4906.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Casanova M., Lopez-Ribot J. L., Monteagudo C., Llombart-Bosch A., Sentandreu R., Martinez J. P. Identification of a 58-kilodalton cell surface fibrinogen-binding mannoprotein from Candida albicans. Infect Immun. 1992 Oct;60(10):4221–4229. doi: 10.1128/iai.60.10.4221-4229.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cassone A. Cell wall of Candida albicans: its functions and its impact on the host. Curr Top Med Mycol. 1989;3:248–314. doi: 10.1007/978-1-4612-3624-5_10. [DOI] [PubMed] [Google Scholar]
  7. Cenciarelli C., Hou D., Hsu K. C., Rellahan B. L., Wiest D. L., Smith H. T., Fried V. A., Weissman A. M. Activation-induced ubiquitination of the T cell antigen receptor. Science. 1992 Aug 7;257(5071):795–797. doi: 10.1126/science.1323144. [DOI] [PubMed] [Google Scholar]
  8. Chaffin W. L., Stocco D. M. Cell wall proteins of Candida albicans. Can J Microbiol. 1983 Oct;29(10):1438–1444. doi: 10.1139/m83-220. [DOI] [PubMed] [Google Scholar]
  9. Damagnez V., Rolfe M., Cottarel G. Schizosaccharomyces pombe and Candida albicans cDNA homologues of the Saccharomyces cerevisiae UBC4 gene. Gene. 1995 Mar 21;155(1):137–138. doi: 10.1016/0378-1119(94)00926-j. [DOI] [PubMed] [Google Scholar]
  10. Finley D., Chau V. Ubiquitination. Annu Rev Cell Biol. 1991;7:25–69. doi: 10.1146/annurev.cb.07.110191.000325. [DOI] [PubMed] [Google Scholar]
  11. Finley D., Ozkaynak E., Varshavsky A. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell. 1987 Mar 27;48(6):1035–1046. doi: 10.1016/0092-8674(87)90711-2. [DOI] [PubMed] [Google Scholar]
  12. Goldstein G., Scheid M., Hammerling U., Schlesinger D. H., Niall H. D., Boyse E. A. Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc Natl Acad Sci U S A. 1975 Jan;72(1):11–15. doi: 10.1073/pnas.72.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lee K. L., Buckley H. R., Campbell C. C. An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida Albicans. Sabouraudia. 1975 Jul;13(2):148–153. doi: 10.1080/00362177585190271. [DOI] [PubMed] [Google Scholar]
  14. Leung D. W., Spencer S. A., Cachianes G., Hammonds R. G., Collins C., Henzel W. J., Barnard R., Waters M. J., Wood W. I. Growth hormone receptor and serum binding protein: purification, cloning and expression. Nature. 1987 Dec 10;330(6148):537–543. doi: 10.1038/330537a0. [DOI] [PubMed] [Google Scholar]
  15. López-Ribot J. L., Casanova M., Monteagudo C., Sepúlveda P., Martínez J. P. Evidence for the presence of a high-affinity laminin receptor-like molecule on the surface of Candida albicans yeast cells. Infect Immun. 1994 Feb;62(2):742–746. doi: 10.1128/iai.62.2.742-746.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. López-Ribot J. L., Chaffin W. L. Binding of the extracellular matrix component entactin to Candida albicans. Infect Immun. 1994 Oct;62(10):4564–4571. doi: 10.1128/iai.62.10.4564-4571.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. López-Ribot J. L., Martínez J. P., Chaffin W. L. Comparative study of the C3d receptor and 58-kilodalton fibrinogen-binding mannoproteins of Candida albicans. Infect Immun. 1995 Jun;63(6):2126–2132. doi: 10.1128/iai.63.6.2126-2132.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mori S., Heldin C. H., Claesson-Welsh L. Ligand-induced polyubiquitination of the platelet-derived growth factor beta-receptor. J Biol Chem. 1992 Mar 25;267(9):6429–6434. [PubMed] [Google Scholar]
  19. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  20. Paolini R., Kinet J. P. Cell surface control of the multiubiquitination and deubiquitination of high-affinity immunoglobulin E receptors. EMBO J. 1993 Feb;12(2):779–786. doi: 10.1002/j.1460-2075.1993.tb05712.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Saxena A., Calderone R. Purification and characterization of the extracellular C3d-binding protein of Candida albicans. Infect Immun. 1990 Feb;58(2):309–314. doi: 10.1128/iai.58.2.309-314.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Siegelman M., Bond M. W., Gallatin W. M., St John T., Smith H. T., Fried V. A., Weissman I. L. Cell surface molecule associated with lymphocyte homing is a ubiquitinated branched-chain glycoprotein. Science. 1986 Feb 21;231(4740):823–829. doi: 10.1126/science.3003913. [DOI] [PubMed] [Google Scholar]
  23. Wadsworth E., Prasad S. C., Calderone R. Analysis of mannoproteins from blastoconidia and hyphae of Candida albicans with a common epitope recognized by anti-complement receptor type 2 antibodies. Infect Immun. 1993 Nov;61(11):4675–4681. doi: 10.1128/iai.61.11.4675-4681.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. van de Rijn M., Weissman I. L., Siegelman M. Biosynthesis pathway of gp90MEL-14, the mouse lymph node-specific homing receptor. J Immunol. 1990 Sep 1;145(5):1477–1482. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES