Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Nov;64(11):4415–4423. doi: 10.1128/iai.64.11.4415-4423.1996

Channel-forming activity and channel size of the RTX toxins ApxI, ApxII, and ApxIII of Actinobacillus pleuropneumoniae.

E Maier 1, N Reinhard 1, R Benz 1, J Frey 1
PMCID: PMC174392  PMID: 8890186

Abstract

The determinants of the Actinobacillus pleuropneumoniae RTX toxins ApxI, ApxII, and ApxIII were expressed in an Escherichia coli strain. The toxins were concentrated from the supernatants of cell cultures. The addition of the toxins to the aqueous-phase-bathing lipid bilayer membranes resulted in an increase in the membrane conductance when membranes made of asolectin or phosphatidylethanolamine were used. The toxins were relatively inactive in membranes made of other lipids. The membrane activity (i.e., the number of channels formed at a given Apx concentration) was different for each of the three Apx toxins. That of ApxI, which has the strongest cytotoxic activity, was highest, followed by that of ApxIII and ApxII, which is the least cytotoxic. The conductance increases of ApxIII and ApxII were smaller by factors of 10 and 50, respectively, than that of ApxI under otherwise identical conditions. Single-channel experiments demonstrated that all three Apx toxins formed ion-permeable channels of different conductances. The major open state was approximately the same for the two hemolytic toxins ApxI and ApxII (540 and 620 pS in 0.15 M KCI), whereas the single-channel conductance of the nonhemolytic ApxIII was approximately one-fifth of that of the other two toxins (95 pS). Experiments with different salts suggested that the Apx channels of A. pleuropneumoniae were exclusively cation selective because of negative charges localized at the channel mouth. Analysis of the single-channel data using the Renkin correction factor suggested that the Apx toxins formed aqueous channels with different diameters for the three toxins. Pore-forming properties of the Apx toxins were compared with those of other RTX toxins. All of these toxins have common features and form channels that are transient but have different sizes as judged from the different single-channel conductances.

Full Text

The Full Text of this article is available as a PDF (273.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beck M., van den Bosch J. F., Jongenelen I. M., Loeffen P. L., Nielsen R., Nicolet J., Frey J. RTX toxin genotypes and phenotypes in Actinobacillus pleuropneumoniae field strains. J Clin Microbiol. 1994 Nov;32(11):2749–2754. doi: 10.1128/jcm.32.11.2749-2754.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benz R., Hardie K. R., Hughes C. Pore formation in artificial membranes by the secreted hemolysins of Proteus vulgaris and Morganella morganii. Eur J Biochem. 1994 Mar 1;220(2):339–347. doi: 10.1111/j.1432-1033.1994.tb18630.x. [DOI] [PubMed] [Google Scholar]
  3. Benz R., Janko K., Boos W., Läuger P. Formation of large, ion-permeable membrane channels by the matrix protein (porin) of Escherichia coli. Biochim Biophys Acta. 1978 Aug 17;511(3):305–319. doi: 10.1016/0005-2736(78)90269-9. [DOI] [PubMed] [Google Scholar]
  4. Benz R., Janko K., Läuger P. Ionic selectivity of pores formed by the matrix protein (porin) of Escherichia coli. Biochim Biophys Acta. 1979 Mar 8;551(2):238–247. doi: 10.1016/0005-2736(89)90002-3. [DOI] [PubMed] [Google Scholar]
  5. Benz R., Maier E., Ladant D., Ullmann A., Sebo P. Adenylate cyclase toxin (CyaA) of Bordetella pertussis. Evidence for the formation of small ion-permeable channels and comparison with HlyA of Escherichia coli. J Biol Chem. 1994 Nov 4;269(44):27231–27239. [PubMed] [Google Scholar]
  6. Benz R., Schmid A., Wagner W., Goebel W. Pore formation by the Escherichia coli hemolysin: evidence for an association-dissociation equilibrium of the pore-forming aggregates. Infect Immun. 1989 Mar;57(3):887–895. doi: 10.1128/iai.57.3.887-895.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bhakdi S., Greulich S., Muhly M., Eberspächer B., Becker H., Thiele A., Hugo F. Potent leukocidal action of Escherichia coli hemolysin mediated by permeabilization of target cell membranes. J Exp Med. 1989 Mar 1;169(3):737–754. doi: 10.1084/jem.169.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bhakdi S., Mackman N., Nicaud J. M., Holland I. B. Escherichia coli hemolysin may damage target cell membranes by generating transmembrane pores. Infect Immun. 1986 Apr;52(1):63–69. doi: 10.1128/iai.52.1.63-69.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chang Y. F., Shi J., Ma D. P., Shin S. J., Lein D. H. Molecular analysis of the Actinobacillus pleuropneumoniae RTX toxin-III gene cluster. DNA Cell Biol. 1993 May;12(4):351–362. doi: 10.1089/dna.1993.12.351. [DOI] [PubMed] [Google Scholar]
  10. Chang Y. F., Young R., Struck D. K. Cloning and characterization of a hemolysin gene from Actinobacillus (Haemophilus) pleuropneumoniae. DNA. 1989 Nov;8(9):635–647. doi: 10.1089/dna.1.1989.8.635. [DOI] [PubMed] [Google Scholar]
  11. Cullen J. M., Rycroft A. N. Phagocytosis by pig alveolar macrophages of Actinobacillus pleuropneumoniae serotype 2 mutant strains defective in haemolysin II (ApxII) and pleurotoxin (ApxIII). Microbiology. 1994 Feb;140(Pt 2):237–244. doi: 10.1099/13500872-140-2-237. [DOI] [PubMed] [Google Scholar]
  12. Devenish J., Rosendal S., Bossé J. T. Humoral antibody response and protective immunity in swine following immunization with the 104-kilodalton hemolysin of Actinobacillus pleuropneumoniae. Infect Immun. 1990 Dec;58(12):3829–3832. doi: 10.1128/iai.58.12.3829-3832.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ehrmann I. E., Gray M. C., Gordon V. M., Gray L. S., Hewlett E. L. Hemolytic activity of adenylate cyclase toxin from Bordetella pertussis. FEBS Lett. 1991 Jan 14;278(1):79–83. doi: 10.1016/0014-5793(91)80088-k. [DOI] [PubMed] [Google Scholar]
  14. Frey J., Bosse J. T., Chang Y. F., Cullen J. M., Fenwick B., Gerlach G. F., Gygi D., Haesebrouck F., Inzana T. J., Jansen R. Actinobacillus pleuropneumoniae RTX-toxins: uniform designation of haemolysins, cytolysins, pleurotoxin and their genes. J Gen Microbiol. 1993 Aug;139(8):1723–1728. doi: 10.1099/00221287-139-8-1723. [DOI] [PubMed] [Google Scholar]
  15. Frey J., Kuhn R., Nicolet J. Association of the CAMP phenomenon in Actinobacillus pleuropneumoniae with the RTX toxins ApxI, ApxII and ApxIII. FEMS Microbiol Lett. 1994 Dec 1;124(2):245–251. doi: 10.1111/j.1574-6968.1994.tb07291.x. [DOI] [PubMed] [Google Scholar]
  16. Frey J., Meier R., Gygi D., Nicolet J. Nucleotide sequence of the hemolysin I gene from Actinobacillus pleuropneumoniae. Infect Immun. 1991 Sep;59(9):3026–3032. doi: 10.1128/iai.59.9.3026-3032.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Frey J., Nicolet J. Hemolysin patterns of Actinobacillus pleuropneumoniae. J Clin Microbiol. 1990 Feb;28(2):232–236. doi: 10.1128/jcm.28.2.232-236.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Frey J., van den Bosch H., Segers R., Nicolet J. Identification of a second hemolysin (HlyII) in Actinobacillus pleuropneumoniae serotype 1 and expression of the gene in Escherichia coli. Infect Immun. 1992 Apr;60(4):1671–1676. doi: 10.1128/iai.60.4.1671-1676.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gygi D., Nicolet J., Hughes C., Frey J. Functional analysis of the Ca(2+)-regulated hemolysin I operon of Actinobacillus pleuropneumoniae serotype 1. Infect Immun. 1992 Aug;60(8):3059–3064. doi: 10.1128/iai.60.8.3059-3064.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jansen R., Briaire J., Smith H. E., Dom P., Haesebrouck F., Kamp E. M., Gielkens A. L., Smits M. A. Knockout mutants of Actinobacillus pleuropneumoniae serotype 1 that are devoid of RTX toxins do not activate or kill porcine neutrophils. Infect Immun. 1995 Jan;63(1):27–37. doi: 10.1128/iai.63.1.27-37.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jansen R., Briaire J., van Geel A. B., Kamp E. M., Gielkens A. L., Smits M. A. Genetic map of the Actinobacillus pleuropneumoniae RTX-toxin (Apx) operons: characterization of the ApxIII operons. Infect Immun. 1994 Oct;62(10):4411–4418. doi: 10.1128/iai.62.10.4411-4418.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jonas D., Schultheis B., Klas C., Krammer P. H., Bhakdi S. Cytocidal effects of Escherichia coli hemolysin on human T lymphocytes. Infect Immun. 1993 May;61(5):1715–1721. doi: 10.1128/iai.61.5.1715-1721.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kamp E. M., Popma J. K., Anakotta J., Smits M. A. Identification of hemolytic and cytotoxic proteins of Actinobacillus pleuropneumoniae by use of monoclonal antibodies. Infect Immun. 1991 Sep;59(9):3079–3085. doi: 10.1128/iai.59.9.3079-3085.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. König B., Ludwig A., Goebel W., König W. Pore formation by the Escherichia coli alpha-hemolysin: role for mediator release from human inflammatory cells. Infect Immun. 1994 Oct;62(10):4611–4617. doi: 10.1128/iai.62.10.4611-4617.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lalonde G., McDonald T. V., Gardner P., O'Hanley P. D. Identification of a hemolysin from Actinobacillus pleuropneumoniae and characterization of its channel properties in planar phospholipid bilayers. J Biol Chem. 1989 Aug 15;264(23):13559–13564. [PubMed] [Google Scholar]
  26. Ludwig A., Benz R., Goebel W. Oligomerization of Escherichia coli haemolysin (HlyA) is involved in pore formation. Mol Gen Genet. 1993 Oct;241(1-2):89–96. doi: 10.1007/BF00280205. [DOI] [PubMed] [Google Scholar]
  27. Menestrina G., Antolini R. Ion transport through hemocyanin channels in oxidized cholesterol artificial bilayer membranes. Biochim Biophys Acta. 1981 May 20;643(3):616–625. doi: 10.1016/0005-2736(81)90357-6. [DOI] [PubMed] [Google Scholar]
  28. Moayeri M., Welch R. A. Effects of temperature, time, and toxin concentration on lesion formation by the Escherichia coli hemolysin. Infect Immun. 1994 Oct;62(10):4124–4134. doi: 10.1128/iai.62.10.4124-4134.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nelson A. P., McQuarrie D. A. The effect of discrete charges on the electrical properties of a membrane. I. J Theor Biol. 1975 Nov;55(1):13–27. doi: 10.1016/s0022-5193(75)80106-8. [DOI] [PubMed] [Google Scholar]
  30. Nicolet J. Taxonomy and Serological Identification of Actinobacillus pleuropneumoniae. Can Vet J. 1988 Jul;29(7):578–580. [PMC free article] [PubMed] [Google Scholar]
  31. Nikaido H., Rosenberg E. Y. Effect on solute size on diffusion rates through the transmembrane pores of the outer membrane of Escherichia coli. J Gen Physiol. 1981 Feb;77(2):121–135. doi: 10.1085/jgp.77.2.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. RENKIN E. M. Filtration, diffusion, and molecular sieving through porous cellulose membranes. J Gen Physiol. 1954 Nov 20;38(2):225–243. [PMC free article] [PubMed] [Google Scholar]
  33. Rapp V. J., Ross R. F., Erickson B. Z. Serotyping of Haemophilus pleuropneumoniae by rapid slide agglutination and indirect fluorescent antibody tests in swine. Am J Vet Res. 1985 Jan;46(1):185–192. [PubMed] [Google Scholar]
  34. Reimer D., Frey J., Jansen R., Veit H. P., Inzana T. J. Molecular investigation of the role of ApxI and ApxII in the virulence of Actinobacillus pleuropneumoniae serotype 5. Microb Pathog. 1995 Mar;18(3):197–209. doi: 10.1016/s0882-4010(95)90049-7. [DOI] [PubMed] [Google Scholar]
  35. Ropele M., Menestrina G. Electrical properties and molecular architecture of the channel formed by Escherichia coli hemolysin in planar lipid membranes. Biochim Biophys Acta. 1989 Oct 2;985(1):9–18. doi: 10.1016/0005-2736(89)90096-5. [DOI] [PubMed] [Google Scholar]
  36. Rycroft A. N., Williams D., Cullen J. M., Macdonald J. The cytotoxin of Actinobacillus pleuropneumoniae (pleurotoxin) is distinct from the haemolysin and is associated with a 120 kDa polypeptide. J Gen Microbiol. 1991 Mar;137(3):561–568. doi: 10.1099/00221287-137-3-561. [DOI] [PubMed] [Google Scholar]
  37. Stevens P., Czuprynski C. Dissociation of cytolysis and monokine release by bovine mononuclear phagocytes incubated with Pasteurella haemolytica partially purified leukotoxin and lipopolysaccharide. Can J Vet Res. 1995 Apr;59(2):110–117. [PMC free article] [PubMed] [Google Scholar]
  38. Szabo G., Gray M. C., Hewlett E. L. Adenylate cyclase toxin from Bordetella pertussis produces ion conductance across artificial lipid bilayers in a calcium- and polarity-dependent manner. J Biol Chem. 1994 Sep 9;269(36):22496–22499. [PubMed] [Google Scholar]
  39. Tascón R. I., Vázquez-Boland J. A., Gutiérrez-Martín C. B., Rodríguez-Barbosa I., Rodríguez-Ferri E. F. The RTX haemolysins ApxI and ApxII are major virulence factors of the swine pathogen Actinobacillus pleuropneumoniae: evidence from mutational analysis. Mol Microbiol. 1994 Oct;14(2):207–216. doi: 10.1111/j.1365-2958.1994.tb01282.x. [DOI] [PubMed] [Google Scholar]
  40. Trias J., Benz R. Characterization of the channel formed by the mycobacterial porin in lipid bilayer membranes. Demonstration of voltage gating and of negative point charges at the channel mouth. J Biol Chem. 1993 Mar 25;268(9):6234–6240. [PubMed] [Google Scholar]
  41. Trias J., Benz R. Permeability of the cell wall of Mycobacterium smegmatis. Mol Microbiol. 1994 Oct;14(2):283–290. doi: 10.1111/j.1365-2958.1994.tb01289.x. [DOI] [PubMed] [Google Scholar]
  42. Walmrath D., Ghofrani H. A., Rosseau S., Schütte H., Cramer A., Kaddus W., Grimminger F., Bhakdi S., Seeger W. Endotoxin "priming" potentiates lung vascular abnormalities in response to Escherichia coli hemolysin: an example of synergism between endo- and exotoxin. J Exp Med. 1994 Oct 1;180(4):1437–1443. doi: 10.1084/jem.180.4.1437. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES