Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Nov;64(11):4433–4437. doi: 10.1128/iai.64.11.4433-4437.1996

Effects of Clostridium difficile toxin A and toxin B on phospholipase D activation in human promyelocytic leukemic HL60 cells.

K Ohguchi 1, Y Banno 1, S Nakashima 1, N Kato 1, K Watanabe 1, D M Lyerly 1, Y Nozawa 1
PMCID: PMC174394  PMID: 8890188

Abstract

The possible involvement of Rho family GTP-binding proteins in the regulation of phospholipase D (PLD) activity has recently been demonstrated. In the present study, to further examine the role of Rho family proteins in PLD activation of human promyelocytic leukemic HL60 cells, we used toxin A and toxin B from the anaerobic bacterium Clostridium difficile, which was shown to glucosylate Rho family proteins and inhibit their interaction with effectors. Pretreatment of [3H]oleic acid-labeled HL60 cell lysates with either one of the toxins resulted in a remarkable inhibition of membrane PLD activity stimulated by guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS). The magnitude of inhibition of PLD activity was correlated well with the extent of toxin A- or B-induced glucosylation of 22-kDa RhoA in HL60 cells, toxin B being more effective than toxin A. GTPgammaS-stimulated PLD activation measured with the exogenous substrate containing phosphatidylinositol 4,5-bisphosphate was also inhibited by toxin B. Toxin B had no effect on GTP-gammaS-induced translocation of RhoA from cytosol to membranes. Furthermore, the toxin B pretreatment also suppressed PLD activation induced by 4beta-phorbol 12-myristate 13-acetate in HL60 cell lysates. Thus, it was indicated that Rho family proteins play a key role in GTPgammaS- and 40-phorbol 12-myristate 13-acetate-induced PLD activity in HL60 cells. In addition, the results obtained here indicate that C. difficile toxins are a useful tool for researching the regulation of the Rho family protein-mediated PLD activation and also provide a clue toward understanding the pathogenic background of pseudomembranous colitis from the viewpoint of signal transduction.

Full Text

The Full Text of this article is available as a PDF (668.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aktories K., Just I. Monoglucosylation of low-molecular-mass GTP-binding Rho proteins by clostridial cytotoxins. Trends Cell Biol. 1995 Dec;5(12):441–443. doi: 10.1016/s0962-8924(00)89107-2. [DOI] [PubMed] [Google Scholar]
  2. Alam M. S., Banno Y., Nakashima S., Nozawa Y. Defective phospholipase D activation in Ki-ras-transformed NIH3T3 cells: evidence for downstream effector of PLC-gamma 1 in PDGF-mediated signal transduction. Biochem Biophys Res Commun. 1995 Feb 6;207(1):460–466. doi: 10.1006/bbrc.1995.1210. [DOI] [PubMed] [Google Scholar]
  3. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  4. Balboa M. A., Insel P. A. Nuclear phospholipase D in Madin-Darby canine kidney cells. Guanosine 5'-O-(thiotriphosphate)-stimulated activation is mediated by RhoA and is downstream of protein kinase C. J Biol Chem. 1995 Dec 15;270(50):29843–29847. doi: 10.1074/jbc.270.50.29843. [DOI] [PubMed] [Google Scholar]
  5. Banno Y., Kobayashi T., Kono H., Watanabe K., Ueno K., Nozawa Y. Biochemical characterization and biologic actions of two toxins (D-1 and D-2) from Clostridium difficile. Rev Infect Dis. 1984 Mar-Apr;6 (Suppl 1):S11–S20. doi: 10.1093/clinids/6.supplement_1.s11. [DOI] [PubMed] [Google Scholar]
  6. Banno Y., Nakashima S., Hachiya T., Nozawa Y. Endogenous cleavage of phospholipase C-beta 3 by agonist-induced activation of calpain in human platelets. J Biol Chem. 1995 Mar 3;270(9):4318–4324. doi: 10.1074/jbc.270.9.4318. [DOI] [PubMed] [Google Scholar]
  7. Billah M. M., Anthes J. C. The regulation and cellular functions of phosphatidylcholine hydrolysis. Biochem J. 1990 Jul 15;269(2):281–291. doi: 10.1042/bj2690281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bokoch G. M. Chemoattractant signaling and leukocyte activation. Blood. 1995 Sep 1;86(5):1649–1660. [PubMed] [Google Scholar]
  9. Bourgoin S., Harbour D., Desmarais Y., Takai Y., Beaulieu A. Low molecular weight GTP-binding proteins in HL-60 granulocytes. Assessment of the role of ARF and of a 50-kDa cytosolic protein in phospholipase D activation. J Biol Chem. 1995 Feb 17;270(7):3172–3178. doi: 10.1074/jbc.270.7.3172. [DOI] [PubMed] [Google Scholar]
  10. Bowman E. P., Uhlinger D. J., Lambeth J. D. Neutrophil phospholipase D is activated by a membrane-associated Rho family small molecular weight GTP-binding protein. J Biol Chem. 1993 Oct 15;268(29):21509–21512. [PubMed] [Google Scholar]
  11. Brown H. A., Gutowski S., Moomaw C. R., Slaughter C., Sternweis P. C. ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity. Cell. 1993 Dec 17;75(6):1137–1144. doi: 10.1016/0092-8674(93)90323-i. [DOI] [PubMed] [Google Scholar]
  12. Chong L. D., Traynor-Kaplan A., Bokoch G. M., Schwartz M. A. The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell. 1994 Nov 4;79(3):507–513. doi: 10.1016/0092-8674(94)90259-3. [DOI] [PubMed] [Google Scholar]
  13. Cockcroft S., Thomas G. M., Fensome A., Geny B., Cunningham E., Gout I., Hiles I., Totty N. F., Truong O., Hsuan J. J. Phospholipase D: a downstream effector of ARF in granulocytes. Science. 1994 Jan 28;263(5146):523–526. doi: 10.1126/science.8290961. [DOI] [PubMed] [Google Scholar]
  14. Conricode K. M., Brewer K. A., Exton J. H. Activation of phospholipase D by protein kinase C. Evidence for a phosphorylation-independent mechanism. J Biol Chem. 1992 Apr 15;267(11):7199–7202. [PubMed] [Google Scholar]
  15. Conricode K. M., Smith J. L., Burns D. J., Exton J. H. Phospholipase D activation in fibroblast membranes by the alpha and beta isoforms of protein kinase C. FEBS Lett. 1994 Apr 4;342(2):149–153. doi: 10.1016/0014-5793(94)80490-7. [DOI] [PubMed] [Google Scholar]
  16. Exton J. H. Phosphatidylcholine breakdown and signal transduction. Biochim Biophys Acta. 1994 Apr 14;1212(1):26–42. doi: 10.1016/0005-2760(94)90186-4. [DOI] [PubMed] [Google Scholar]
  17. Exton J. H. Signaling through phosphatidylcholine breakdown. J Biol Chem. 1990 Jan 5;265(1):1–4. [PubMed] [Google Scholar]
  18. Hammond S. M., Altshuller Y. M., Sung T. C., Rudge S. A., Rose K., Engebrecht J., Morris A. J., Frohman M. A. Human ADP-ribosylation factor-activated phosphatidylcholine-specific phospholipase D defines a new and highly conserved gene family. J Biol Chem. 1995 Dec 15;270(50):29640–29643. doi: 10.1074/jbc.270.50.29640. [DOI] [PubMed] [Google Scholar]
  19. Just I., Selzer J., Wilm M., von Eichel-Streiber C., Mann M., Aktories K. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature. 1995 Jun 8;375(6531):500–503. doi: 10.1038/375500a0. [DOI] [PubMed] [Google Scholar]
  20. Just I., Selzer J., von Eichel-Streiber C., Aktories K. The low molecular mass GTP-binding protein Rho is affected by toxin A from Clostridium difficile. J Clin Invest. 1995 Mar;95(3):1026–1031. doi: 10.1172/JCI117747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Just I., Wilm M., Selzer J., Rex G., von Eichel-Streiber C., Mann M., Aktories K. The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. J Biol Chem. 1995 Jun 9;270(23):13932–13936. doi: 10.1074/jbc.270.23.13932. [DOI] [PubMed] [Google Scholar]
  22. Krivan H. C., Wilkins T. D. Purification of Clostridium difficile toxin A by affinity chromatography on immobilized thyroglobulin. Infect Immun. 1987 Aug;55(8):1873–1877. doi: 10.1128/iai.55.8.1873-1877.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kuribara H., Tago K., Yokozeki T., Sasaki T., Takai Y., Morii N., Narumiya S., Katada T., Kanaho Y. Synergistic activation of rat brain phospholipase D by ADP-ribosylation factor and rhoA p21, and its inhibition by Clostridium botulinum C3 exoenzyme. J Biol Chem. 1995 Oct 27;270(43):25667–25671. doi: 10.1074/jbc.270.43.25667. [DOI] [PubMed] [Google Scholar]
  24. Kwak J. Y., Lopez I., Uhlinger D. J., Ryu S. H., Lambeth J. D. RhoA and a cytosolic 50-kDa factor reconstitute GTP gamma S-dependent phospholipase D activity in human neutrophil subcellular fractions. J Biol Chem. 1995 Nov 10;270(45):27093–27098. doi: 10.1074/jbc.270.45.27093. [DOI] [PubMed] [Google Scholar]
  25. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  26. Liscovitch M., Chalifa V., Pertile P., Chen C. S., Cantley L. C. Novel function of phosphatidylinositol 4,5-bisphosphate as a cofactor for brain membrane phospholipase D. J Biol Chem. 1994 Aug 26;269(34):21403–21406. [PubMed] [Google Scholar]
  27. Lopez I., Burns D. J., Lambeth J. D. Regulation of phospholipase D by protein kinase C in human neutrophils. Conventional isoforms of protein kinase C phosphorylate a phospholipase D-related component in the plasma membrane. J Biol Chem. 1995 Aug 18;270(33):19465–19472. doi: 10.1074/jbc.270.33.19465. [DOI] [PubMed] [Google Scholar]
  28. Lyerly D. M., Krivan H. C., Wilkins T. D. Clostridium difficile: its disease and toxins. Clin Microbiol Rev. 1988 Jan;1(1):1–18. doi: 10.1128/cmr.1.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Malcolm K. C., Ross A. H., Qiu R. G., Symons M., Exton J. H. Activation of rat liver phospholipase D by the small GTP-binding protein RhoA. J Biol Chem. 1994 Oct 21;269(42):25951–25954. [PubMed] [Google Scholar]
  30. Morii N., Teru-uchi T., Tominaga T., Kumagai N., Kozaki S., Ushikubi F., Narumiya S. A rho gene product in human blood platelets. II. Effects of the ADP-ribosylation by botulinum C3 ADP-ribosyltransferase on platelet aggregation. J Biol Chem. 1992 Oct 15;267(29):20921–20926. [PubMed] [Google Scholar]
  31. Ohguchi K., Banno Y., Nakashima S., Nozawa Y. Activation of membrane-bound phospholipase D by protein kinase C in HL60 cells: synergistic action of a small GTP-binding protein RhoA. Biochem Biophys Res Commun. 1995 Jun 6;211(1):306–311. doi: 10.1006/bbrc.1995.1811. [DOI] [PubMed] [Google Scholar]
  32. Ohguchi K., Banno Y., Nakashima S., Nozawa Y. Regulation of membrane-bound phospholipase D by protein kinase C in HL60 cells. Synergistic action of small GTP-binding protein RhoA. J Biol Chem. 1996 Feb 23;271(8):4366–4372. doi: 10.1074/jbc.271.8.4366. [DOI] [PubMed] [Google Scholar]
  33. Pertile P., Liscovitch M., Chalifa V., Cantley L. C. Phosphatidylinositol 4,5-bisphosphate synthesis is required for activation of phospholipase D in U937 cells. J Biol Chem. 1995 Mar 10;270(10):5130–5135. doi: 10.1074/jbc.270.10.5130. [DOI] [PubMed] [Google Scholar]
  34. Ridley A. J., Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992 Aug 7;70(3):389–399. doi: 10.1016/0092-8674(92)90163-7. [DOI] [PubMed] [Google Scholar]
  35. Schmidt M., Rümenapp U., Bienek C., Keller J., von Eichel-Streiber C., Jakobs K. H. Inhibition of receptor signaling to phospholipase D by Clostridium difficile toxin B. Role of Rho proteins. J Biol Chem. 1996 Feb 2;271(5):2422–2426. doi: 10.1074/jbc.271.5.2422. [DOI] [PubMed] [Google Scholar]
  36. Siddiqi A. R., Smith J. L., Ross A. H., Qiu R. G., Symons M., Exton J. H. Regulation of phospholipase D in HL60 cells. Evidence for a cytosolic phospholipase D. J Biol Chem. 1995 Apr 14;270(15):8466–8473. doi: 10.1074/jbc.270.15.8466. [DOI] [PubMed] [Google Scholar]
  37. Singer W. D., Brown H. A., Bokoch G. M., Sternweis P. C. Resolved phospholipase D activity is modulated by cytosolic factors other than Arf. J Biol Chem. 1995 Jun 23;270(25):14944–14950. doi: 10.1074/jbc.270.25.14944. [DOI] [PubMed] [Google Scholar]
  38. Steed P. M., Nagar S., Wennogle L. P. Phospholipase D regulation by a physical interaction with the actin-binding protein gelsolin. Biochemistry. 1996 Apr 23;35(16):5229–5237. doi: 10.1021/bi952370j. [DOI] [PubMed] [Google Scholar]
  39. Sullivan N. M., Pellett S., Wilkins T. D. Purification and characterization of toxins A and B of Clostridium difficile. Infect Immun. 1982 Mar;35(3):1032–1040. doi: 10.1128/iai.35.3.1032-1040.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Takai Y., Sasaki T., Tanaka K., Nakanishi H. Rho as a regulator of the cytoskeleton. Trends Biochem Sci. 1995 Jun;20(6):227–231. doi: 10.1016/s0968-0004(00)89022-2. [DOI] [PubMed] [Google Scholar]
  41. Tolias K. F., Cantley L. C., Carpenter C. L. Rho family GTPases bind to phosphoinositide kinases. J Biol Chem. 1995 Jul 28;270(30):17656–17659. doi: 10.1074/jbc.270.30.17656. [DOI] [PubMed] [Google Scholar]
  42. von Eichel-Streiber C., Laufenberg-Feldmann R., Sartingen S., Schulze J., Sauerborn M. Comparative sequence analysis of the Clostridium difficile toxins A and B. Mol Gen Genet. 1992 May;233(1-2):260–268. doi: 10.1007/BF00587587. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES