Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Nov;64(11):4444–4449. doi: 10.1128/iai.64.11.4444-4449.1996

Isolation, antimicrobial activities, and primary structures of hamster neutrophil defensins.

P Mak 1, K Wójcik 1, I B Thogersen 1, A Dubin 1
PMCID: PMC174396  PMID: 8890190

Abstract

Hamster (Mesocricetus auratus) neutrophil granules contain at least four microbicidal peptides belonging to the defensin family. These compounds were purified from granule acid extracts by reverse-phase chromatography and termed HaNP-1 to -4 (hamster neutrophil peptide). HaNP-1 and HaNP-3 revealed the most bactericidal activity, with a 50% inhibitory concentration of 0.3 to 0.8 microg/ml for Staphylococcus aureus and Streptococcus pyogenes strains. The HaNP-4 was always isolated in concentrations exceeding about 10 times the concentrations of other hamster peptides, but its antibacterial activity as well as that of HaNP-2 was relatively lower, probably as a result of conserved Arg residue substitutions. Other microorganisms were also tested, and generally, hamster defensins exhibited less potency against gram-negative bacteria. The amino acid sequence of hamster defensins showed a high percentage of identity to the sequence of mouse enteric defensins, reaching about 60% identical residues in the case of HaNP-3 and cryptdin 3.

Full Text

The Full Text of this article is available as a PDF (411.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bangalore N., Travis J., Onunka V. C., Pohl J., Shafer W. M. Identification of the primary antimicrobial domains in human neutrophil cathepsin G. J Biol Chem. 1990 Aug 15;265(23):13584–13588. [PubMed] [Google Scholar]
  2. Belcourt D., Singh A., Bateman A., Lazure C., Solomon S., Bennett H. P. Purification of cationic cystine-rich peptides from rat bone marrow. Primary structures and biological activity of the rat corticostatin family of peptides. Regul Pept. 1992 Jul 2;40(1):87–100. doi: 10.1016/0167-0115(92)90086-a. [DOI] [PubMed] [Google Scholar]
  3. Bevins C. L. Antimicrobial peptides as agents of mucosal immunity. Ciba Found Symp. 1994;186:250–269. doi: 10.1002/9780470514658.ch15. [DOI] [PubMed] [Google Scholar]
  4. Boman H. G. Antibacterial peptides: key components needed in immunity. Cell. 1991 Apr 19;65(2):205–207. doi: 10.1016/0092-8674(91)90154-q. [DOI] [PubMed] [Google Scholar]
  5. Boudier C., Bieth J. G. Estimation and characterization of hamster leukocyte elastase. Biochem Med. 1982 Aug;28(1):41–50. doi: 10.1016/0006-2944(82)90053-9. [DOI] [PubMed] [Google Scholar]
  6. Broekaert W. F., Terras F. R., Cammue B. P., Osborn R. W. Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol. 1995 Aug;108(4):1353–1358. doi: 10.1104/pp.108.4.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Campanelli D., Detmers P. A., Nathan C. F., Gabay J. E. Azurocidin and a homologous serine protease from neutrophils. Differential antimicrobial and proteolytic properties. J Clin Invest. 1990 Mar;85(3):904–915. doi: 10.1172/JCI114518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Couto M. A., Harwig S. S., Cullor J. S., Hughes J. P., Lehrer R. I. eNAP-2, a novel cysteine-rich bactericidal peptide from equine leukocytes. Infect Immun. 1992 Dec;60(12):5042–5047. doi: 10.1128/iai.60.12.5042-5047.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Daher K. A., Lehrer R. I., Ganz T., Kronenberg M. Isolation and characterization of human defensin cDNA clones. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7327–7331. doi: 10.1073/pnas.85.19.7327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eisenhauer P. B., Harwig S. S., Lehrer R. I. Cryptdins: antimicrobial defensins of the murine small intestine. Infect Immun. 1992 Sep;60(9):3556–3565. doi: 10.1128/iai.60.9.3556-3565.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eisenhauer P. B., Harwig S. S., Szklarek D., Ganz T., Selsted M. E., Lehrer R. I. Purification and antimicrobial properties of three defensins from rat neutrophils. Infect Immun. 1989 Jul;57(7):2021–2027. doi: 10.1128/iai.57.7.2021-2027.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eisenhauer P. B., Lehrer R. I. Mouse neutrophils lack defensins. Infect Immun. 1992 Aug;60(8):3446–3447. doi: 10.1128/iai.60.8.3446-3447.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Frank R. W., Gennaro R., Schneider K., Przybylski M., Romeo D. Amino acid sequences of two proline-rich bactenecins. Antimicrobial peptides of bovine neutrophils. J Biol Chem. 1990 Nov 5;265(31):18871–18874. [PubMed] [Google Scholar]
  14. Ganz T. Extracellular release of antimicrobial defensins by human polymorphonuclear leukocytes. Infect Immun. 1987 Mar;55(3):568–571. doi: 10.1128/iai.55.3.568-571.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ganz T., Rayner J. R., Valore E. V., Tumolo A., Talmadge K., Fuller F. The structure of the rabbit macrophage defensin genes and their organ-specific expression. J Immunol. 1989 Aug 15;143(4):1358–1365. [PubMed] [Google Scholar]
  16. Harwig S. S., Chen N. P., Park A. S., Lehrer R. I. Purification of cysteine-rich bioactive peptides from leukocytes by continuous acid-urea-polyacrylamide gel electrophoresis. Anal Biochem. 1993 Feb 1;208(2):382–386. doi: 10.1006/abio.1993.1065. [DOI] [PubMed] [Google Scholar]
  17. Huttner K. M., Selsted M. E., Ouellette A. J. Structure and diversity of the murine cryptdin gene family. Genomics. 1994 Feb;19(3):448–453. doi: 10.1006/geno.1994.1093. [DOI] [PubMed] [Google Scholar]
  18. Jones D. E., Bevins C. L. Defensin-6 mRNA in human Paneth cells: implications for antimicrobial peptides in host defense of the human bowel. FEBS Lett. 1993 Jan 4;315(2):187–192. doi: 10.1016/0014-5793(93)81160-2. [DOI] [PubMed] [Google Scholar]
  19. Jones D. E., Bevins C. L. Paneth cells of the human small intestine express an antimicrobial peptide gene. J Biol Chem. 1992 Nov 15;267(32):23216–23225. [PubMed] [Google Scholar]
  20. Kagan B. L., Ganz T., Lehrer R. I. Defensins: a family of antimicrobial and cytotoxic peptides. Toxicology. 1994 Feb 28;87(1-3):131–149. doi: 10.1016/0300-483x(94)90158-9. [DOI] [PubMed] [Google Scholar]
  21. Koj A., Chudzik J., Pajdak W., Dubin A. The occurrence of common inhibitors of trypsin and of leucocyte neutral proteinase in human serum. Biochim Biophys Acta. 1972 Apr 7;268(1):199–206. doi: 10.1016/0005-2744(72)90215-x. [DOI] [PubMed] [Google Scholar]
  22. Kokryakov V. N., Harwig S. S., Panyutich E. A., Shevchenko A. A., Aleshina G. M., Shamova O. V., Korneva H. A., Lehrer R. I. Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett. 1993 Jul 26;327(2):231–236. doi: 10.1016/0014-5793(93)80175-t. [DOI] [PubMed] [Google Scholar]
  23. Lehrer R. I., Ganz T. Antimicrobial polypeptides of human neutrophils. Blood. 1990 Dec 1;76(11):2169–2181. [PubMed] [Google Scholar]
  24. Lehrer R. I., Lichtenstein A. K., Ganz T. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol. 1993;11:105–128. doi: 10.1146/annurev.iy.11.040193.000541. [DOI] [PubMed] [Google Scholar]
  25. Maloy W. L., Kari U. P. Structure-activity studies on magainins and other host defense peptides. Biopolymers. 1995;37(2):105–122. doi: 10.1002/bip.360370206. [DOI] [PubMed] [Google Scholar]
  26. Martin E., Ganz T., Lehrer R. I. Defensins and other endogenous peptide antibiotics of vertebrates. J Leukoc Biol. 1995 Aug;58(2):128–136. doi: 10.1002/jlb.58.2.128. [DOI] [PubMed] [Google Scholar]
  27. Nagaoka I., Ishihara N., Yamashita T. Characterization of the promoters of the guinea pig neutrophil cationic peptide-1 and -2 genes. FEBS Lett. 1994 Dec 12;356(1):33–38. doi: 10.1016/0014-5793(94)01229-6. [DOI] [PubMed] [Google Scholar]
  28. Nicolas P., Mor A. Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annu Rev Microbiol. 1995;49:277–304. doi: 10.1146/annurev.mi.49.100195.001425. [DOI] [PubMed] [Google Scholar]
  29. Ouellette A. J., Hsieh M. M., Nosek M. T., Cano-Gauci D. F., Huttner K. M., Buick R. N., Selsted M. E. Mouse Paneth cell defensins: primary structures and antibacterial activities of numerous cryptdin isoforms. Infect Immun. 1994 Nov;62(11):5040–5047. doi: 10.1128/iai.62.11.5040-5047.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Patterson-Delafield J., Martinez R. J., Lehrer R. I. Microbicidal cationic proteins in rabbit alveolar macrophages: a potential host defense mechanism. Infect Immun. 1980 Oct;30(1):180–192. doi: 10.1128/iai.30.1.180-192.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rao A. G. Antimicrobial peptides. Mol Plant Microbe Interact. 1995 Jan-Feb;8(1):6–13. doi: 10.1094/mpmi-8-0006. [DOI] [PubMed] [Google Scholar]
  32. Schluesener H., Meyermann R. Neutrophilic defensins penetrate the blood-brain barrier. J Neurosci Res. 1995 Dec;42(5):718–723. doi: 10.1002/jnr.490420515. [DOI] [PubMed] [Google Scholar]
  33. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  34. Selsted M. E., Brown D. M., DeLange R. J., Harwig S. S., Lehrer R. I. Primary structures of six antimicrobial peptides of rabbit peritoneal neutrophils. J Biol Chem. 1985 Apr 25;260(8):4579–4584. [PubMed] [Google Scholar]
  35. Selsted M. E., Novotny M. J., Morris W. L., Tang Y. Q., Smith W., Cullor J. S. Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem. 1992 Mar 5;267(7):4292–4295. [PubMed] [Google Scholar]
  36. Selsted M. E., Ouellette A. J. Defensins in granules of phagocytic and non-phagocytic cells. Trends Cell Biol. 1995 Mar;5(3):114–119. doi: 10.1016/s0962-8924(00)88961-8. [DOI] [PubMed] [Google Scholar]
  37. Sundqvist B., Kamensky I., Håkansson P., Kjellberg J., Salehpour M., Widdiyasekera S., Fohlman J., Peterson P. A., Roepstorff P. Californium-252 plasma desorption time of flight mass spectroscopy of proteins. Biomed Mass Spectrom. 1984 May;11(5):242–257. doi: 10.1002/bms.1200110509. [DOI] [PubMed] [Google Scholar]
  38. Tominaga T., Fukata J., Hayashi Y., Satoh Y., Fuse N., Segawa H., Ebisui O., Nakai Y., Osamura Y., Imura H. Distribution and characterization of immunoreactive corticostatin in the hypothalamic-pituitary-adrenal axis. Endocrinology. 1992 Mar;130(3):1593–1598. doi: 10.1210/endo.130.3.1537309. [DOI] [PubMed] [Google Scholar]
  39. Watorek W., van Halbeek H., Travis J. The isoforms of human neutrophil elastase and cathepsin G differ in their carbohydrate side chain structures. Biol Chem Hoppe Seyler. 1993 Jun;374(6):385–393. doi: 10.1515/bchm3.1993.374.1-6.385. [DOI] [PubMed] [Google Scholar]
  40. Wilde C. G., Griffith J. E., Marra M. N., Snable J. L., Scott R. W. Purification and characterization of human neutrophil peptide 4, a novel member of the defensin family. J Biol Chem. 1989 Jul 5;264(19):11200–11203. [PubMed] [Google Scholar]
  41. Yamashita T., Saito K. Purification, primary structure, and biological activity of guinea pig neutrophil cationic peptides. Infect Immun. 1989 Aug;57(8):2405–2409. doi: 10.1128/iai.57.8.2405-2409.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yount N. Y., Wang M. S., Yuan J., Banaiee N., Ouellette A. J., Selsted M. E. Rat neutrophil defensins. Precursor structures and expression during neutrophilic myelopoiesis. J Immunol. 1995 Nov 1;155(9):4476–4484. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES