Abstract
We have isolated, characterized, and examined the expression of the genes encoding BiP endoplasmic reticulum (ER) resident chaperonins responsible for transport, maturation, and proper folding of membrane and secreted proteins from two divergent strains of Pneumocystis carinii. The BiP genes, Pcbip and Prbip, from the P. c. carinii (prototype) strain and the P. c. rattus (variant) strain, respectively, are single-copy genes that reside on chromosomes of approximately 330 and approximately 350 kbp. Both genes encode approximately 72.5-kDa proteins that are most homologous to BiP genes from other organisms and exhibit the amino-terminal signal peptides and carboxyl-terminal ER retention sequences that are hallmarks of BiP proteins. We established short-term P. carinii cultures to examine expression and induction of Pcbip in response to heat shock, glucose starvation, inhibition of protein transport or N-linked glycosylation, and other conditions known to affect proper transport, glycosylation, and maturation of membrane and secreted proteins. These studies indicated that Pcbip mRNA is constitutively expressed but induced under conditions known to induce BiP expression in other organisms. In contrast to mammalian BiP genes but like other fungal BiP genes, P. carinii BiP mRNA levels are induced by heat shock. Finally, the Prbip and Pcbip coding sequences surprisingly exhibit only approximately 83% DNA and approximately 90% amino acid sequence identity and show only limited conservation in noncoding flanking and intron sequences. Analyses of the P. carinii BiP gene sequences support inclusion of P. carinii among the fungi but suggest a large divergence and possible speciation among P. carinii strains infecting a given host.
Full Text
The Full Text of this article is available as a PDF (571.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bartlett M. S., Smith J. W. Pneumocystis carinii, an opportunist in immunocompromised patients. Clin Microbiol Rev. 1991 Apr;4(2):137–149. doi: 10.1128/cmr.4.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bauer N. L., Paulsrud J. R., Bartlett M. S., Smith J. W., Wilde C. E., 3rd Pneumocystis carinii organisms obtained from rats, ferrets, and mice are antigenically different. Infect Immun. 1993 Apr;61(4):1315–1319. doi: 10.1128/iai.61.4.1315-1319.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boorstein W. R., Ziegelhoffer T., Craig E. A. Molecular evolution of the HSP70 multigene family. J Mol Evol. 1994 Jan;38(1):1–17. doi: 10.1007/BF00175490. [DOI] [PubMed] [Google Scholar]
- Brandes M. E., Finkelstein J. N. Induction of the stress response by isolation of rabbit type II pneumocytes. Exp Lung Res. 1989;15(1):93–111. doi: 10.3109/01902148909069611. [DOI] [PubMed] [Google Scholar]
- Brodsky J. L., Hamamoto S., Feldheim D., Schekman R. Reconstitution of protein translocation from solubilized yeast membranes reveals topologically distinct roles for BiP and cytosolic Hsc70. J Cell Biol. 1993 Jan;120(1):95–102. doi: 10.1083/jcb.120.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang S. C., Erwin A. E., Lee A. S. Glucose-regulated protein (GRP94 and GRP78) genes share common regulatory domains and are coordinately regulated by common trans-acting factors. Mol Cell Biol. 1989 May;9(5):2153–2162. doi: 10.1128/mcb.9.5.2153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cushion M. T., Kaselis M., Stringer S. L., Stringer J. R. Genetic stability and diversity of Pneumocystis carinii infecting rat colonies. Infect Immun. 1993 Nov;61(11):4801–4813. doi: 10.1128/iai.61.11.4801-4813.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cushion M. T., Zhang J., Kaselis M., Giuntoli D., Stringer S. L., Stringer J. R. Evidence for two genetic variants of Pneumocystis carinii coinfecting laboratory rats. J Clin Microbiol. 1993 May;31(5):1217–1223. doi: 10.1128/jcm.31.5.1217-1223.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Stefano J. A., Cushion M. T., Puvanesarajah V., Walzer P. D. Analysis of Pneumocystis carinii cyst wall. II. Sugar composition. J Protozool. 1990 Sep-Oct;37(5):436–441. doi: 10.1111/j.1550-7408.1990.tb01168.x. [DOI] [PubMed] [Google Scholar]
- De Stefano J. A., Cushion M. T., Sleight R. G., Walzer P. D. Analysis of Pneumocystis carinii cyst wall. I. Evidence for an outer surface membrane. J Protozool. 1990 Sep-Oct;37(5):428–435. doi: 10.1111/j.1550-7408.1990.tb01167.x. [DOI] [PubMed] [Google Scholar]
- Edman J. C., Edman U., Cao M., Lundgren B., Kovacs J. A., Santi D. V. Isolation and expression of the Pneumocystis carinii dihydrofolate reductase gene. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8625–8629. doi: 10.1073/pnas.86.22.8625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edman J. C., Kovacs J. A., Masur H., Santi D. V., Elwood H. J., Sogin M. L. Ribosomal RNA sequence shows Pneumocystis carinii to be a member of the fungi. Nature. 1988 Aug 11;334(6182):519–522. doi: 10.1038/334519a0. [DOI] [PubMed] [Google Scholar]
- Edman U., Edman J. C., Lundgren B., Santi D. V. Isolation and expression of the Pneumocystis carinii thymidylate synthase gene. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6503–6507. doi: 10.1073/pnas.86.17.6503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fletcher L. D., Berger L. C., Peel S. A., Baric R. S., Tidwell R. R., Dykstra C. C. Isolation and identification of six Pneumocystis carinii genes utilizing codon bias. Gene. 1993 Jul 30;129(2):167–174. doi: 10.1016/0378-1119(93)90265-5. [DOI] [PubMed] [Google Scholar]
- Fletcher L. D., McDowell J. M., Tidwell R. R., Meagher R. B., Dykstra C. C. Structure, expression and phylogenetic analysis of the gene encoding actin I in Pneumocystis carinii. Genetics. 1994 Jul;137(3):743–750. doi: 10.1093/genetics/137.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gajadhar A. A., Marquardt W. C., Hall R., Gunderson J., Ariztia-Carmona E. V., Sogin M. L. Ribosomal RNA sequences of Sarcocystis muris, Theileria annulata and Crypthecodinium cohnii reveal evolutionary relationships among apicomplexans, dinoflagellates, and ciliates. Mol Biochem Parasitol. 1991 Mar;45(1):147–154. doi: 10.1016/0166-6851(91)90036-6. [DOI] [PubMed] [Google Scholar]
- Gething M. J., Sambrook J. Protein folding in the cell. Nature. 1992 Jan 2;355(6355):33–45. doi: 10.1038/355033a0. [DOI] [PubMed] [Google Scholar]
- Gupta R. S., Aitken K., Falah M., Singh B. Cloning of Giardia lamblia heat shock protein HSP70 homologs: implications regarding origin of eukaryotic cells and of endoplasmic reticulum. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):2895–2899. doi: 10.1073/pnas.91.8.2895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gupta R. S., Golding G. B. Evolution of HSP70 gene and its implications regarding relationships between archaebacteria, eubacteria, and eukaryotes. J Mol Evol. 1993 Dec;37(6):573–582. doi: 10.1007/BF00182743. [DOI] [PubMed] [Google Scholar]
- Haas I. G. BiP (GRP78), an essential hsp70 resident protein in the endoplasmic reticulum. Experientia. 1994 Nov 30;50(11-12):1012–1020. doi: 10.1007/BF01923455. [DOI] [PubMed] [Google Scholar]
- Haidaris P. J., Wright T. W., Gigliotti F., Haidaris C. G. Expression and characterization of a cDNA clone encoding an immunodominant surface glycoprotein of Pneumocystis carinii. J Infect Dis. 1992 Nov;166(5):1113–1123. doi: 10.1093/infdis/166.5.1113. [DOI] [PubMed] [Google Scholar]
- Hughes A. L. Nonlinear relationships among evolutionary rates identify regions of functional divergence in heat-shock protein 70 genes. Mol Biol Evol. 1993 Jan;10(1):243–255. doi: 10.1093/oxfordjournals.molbev.a039997. [DOI] [PubMed] [Google Scholar]
- Karlovsky P., Prell H. H. The TRP1 gene of Phytophthora parasitica encoding indole-3-glycerolphosphate synthase-N-(5'-phosphoribosyl)anthranilate isomerase: structure and evolutionary distance from homologous fungal genes. Gene. 1991 Dec 20;109(1):161–165. doi: 10.1016/0378-1119(91)90603-9. [DOI] [PubMed] [Google Scholar]
- Kohno K., Normington K., Sambrook J., Gething M. J., Mori K. The promoter region of the yeast KAR2 (BiP) gene contains a regulatory domain that responds to the presence of unfolded proteins in the endoplasmic reticulum. Mol Cell Biol. 1993 Feb;13(2):877–890. doi: 10.1128/mcb.13.2.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kovacs J. A., Powell F., Edman J. C., Lundgren B., Martinez A., Drew B., Angus C. W. Multiple genes encode the major surface glycoprotein of Pneumocystis carinii. J Biol Chem. 1993 Mar 15;268(8):6034–6040. [PubMed] [Google Scholar]
- Kozutsumi Y., Segal M., Normington K., Gething M. J., Sambrook J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature. 1988 Mar 31;332(6163):462–464. doi: 10.1038/332462a0. [DOI] [PubMed] [Google Scholar]
- Lewis M. J., Pelham H. R. A human homologue of the yeast HDEL receptor. Nature. 1990 Nov 8;348(6297):162–163. doi: 10.1038/348162a0. [DOI] [PubMed] [Google Scholar]
- Liu E. S., Ou J. H., Lee A. S. Brefeldin A as a regulator of grp78 gene expression in mammalian cells. J Biol Chem. 1992 Apr 5;267(10):7128–7133. [PubMed] [Google Scholar]
- Mori K., Sant A., Kohno K., Normington K., Gething M. J., Sambrook J. F. A 22 bp cis-acting element is necessary and sufficient for the induction of the yeast KAR2 (BiP) gene by unfolded proteins. EMBO J. 1992 Jul;11(7):2583–2593. doi: 10.1002/j.1460-2075.1992.tb05323.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munro S., Pelham H. R. A C-terminal signal prevents secretion of luminal ER proteins. Cell. 1987 Mar 13;48(5):899–907. doi: 10.1016/0092-8674(87)90086-9. [DOI] [PubMed] [Google Scholar]
- Nikoh N., Hayase N., Iwabe N., Kuma K., Miyata T. Phylogenetic relationship of the kingdoms Animalia, Plantae, and Fungi, inferred from 23 different protein species. Mol Biol Evol. 1994 Sep;11(5):762–768. doi: 10.1093/oxfordjournals.molbev.a040156. [DOI] [PubMed] [Google Scholar]
- Normington K., Kohno K., Kozutsumi Y., Gething M. J., Sambrook J. S. cerevisiae encodes an essential protein homologous in sequence and function to mammalian BiP. Cell. 1989 Jun 30;57(7):1223–1236. doi: 10.1016/0092-8674(89)90059-7. [DOI] [PubMed] [Google Scholar]
- Paulsrud J. R., Queener S. F., Bartlett M. S., Smith J. W. Total cellular fatty acid composition of cultured Pneumocystis carinii. J Clin Microbiol. 1993 Jul;31(7):1899–1902. doi: 10.1128/jcm.31.7.1899-1902.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peterson M. G., Tjian R. Cross-species polymerase chain reaction: cloning of TATA box-binding proteins. Methods Enzymol. 1993;218:493–507. doi: 10.1016/0076-6879(93)18037-d. [DOI] [PubMed] [Google Scholar]
- Pidoux A. L., Armstrong J. Analysis of the BiP gene and identification of an ER retention signal in Schizosaccharomyces pombe. EMBO J. 1992 Apr;11(4):1583–1591. doi: 10.1002/j.1460-2075.1992.tb05203.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Price B. D., Mannheim-Rodman L. A., Calderwood S. K. Brefeldin A, thapsigargin, and AIF4- stimulate the accumulation of GRP78 mRNA in a cycloheximide dependent manner, whilst induction by hypoxia is independent of protein synthesis. J Cell Physiol. 1992 Sep;152(3):545–552. doi: 10.1002/jcp.1041520314. [DOI] [PubMed] [Google Scholar]
- Read M., Hicks K. E., Sims P. F., Hyde J. E. Molecular characterisation of the enolase gene from the human malaria parasite Plasmodium falciparum. Evidence for ancestry within a photosynthetic lineage. Eur J Biochem. 1994 Mar 1;220(2):513–520. doi: 10.1111/j.1432-1033.1994.tb18650.x. [DOI] [PubMed] [Google Scholar]
- Resendez E., Jr, Wooden S. K., Lee A. S. Identification of highly conserved regulatory domains and protein-binding sites in the promoters of the rat and human genes encoding the stress-inducible 78-kilodalton glucose-regulated protein. Mol Cell Biol. 1988 Oct;8(10):4579–4584. doi: 10.1128/mcb.8.10.4579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rose M. D., Misra L. M., Vogel J. P. KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell. 1989 Jun 30;57(7):1211–1221. doi: 10.1016/0092-8674(89)90058-5. [DOI] [PubMed] [Google Scholar]
- Saitou N. On the delta Q-test of Templeton. Mol Biol Evol. 1986 May;3(3):282–284. doi: 10.1093/oxfordjournals.molbev.a040395. [DOI] [PubMed] [Google Scholar]
- Semenza J. C., Pelham H. R. Changing the specificity of the sorting receptor for luminal endoplasmic reticulum proteins. J Mol Biol. 1992 Mar 5;224(1):1–5. doi: 10.1016/0022-2836(92)90571-z. [DOI] [PubMed] [Google Scholar]
- Sinclair K., Wakefield A. E., Banerji S., Hopkin J. M. Pneumocystis carinii organisms derived from rat and human hosts are genetically distinct. Mol Biochem Parasitol. 1991 Mar;45(1):183–184. doi: 10.1016/0166-6851(91)90042-5. [DOI] [PubMed] [Google Scholar]
- Stringer J. R., Edman J. C., Cushion M. T., Richards F. F., Watanabe J. The fungal nature of Pneumocystis. J Med Vet Mycol. 1992;30 (Suppl 1):271–278. doi: 10.1080/02681219280000961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stringer J. R., Stringer S. L., Zhang J., Baughman R., Smulian A. G., Cushion M. T. Molecular genetic distinction of Pneumocystis carinii from rats and humans. J Eukaryot Microbiol. 1993 Nov-Dec;40(6):733–741. doi: 10.1111/j.1550-7408.1993.tb04468.x. [DOI] [PubMed] [Google Scholar]
- Stringer J. R. The identity of Pneumocystis carinii: not a single protozoan, but a diverse group of exotic fungi. Infect Agents Dis. 1993 Jun;2(3):109–117. [PubMed] [Google Scholar]
- Stringer S. L., Stringer J. R., Blase M. A., Walzer P. D., Cushion M. T. Pneumocystis carinii: sequence from ribosomal RNA implies a close relationship with fungi. Exp Parasitol. 1989 May;68(4):450–461. doi: 10.1016/0014-4894(89)90130-6. [DOI] [PubMed] [Google Scholar]
- Van der Auwera G., Chapelle S., De Wachter R. Structure of the large ribosomal subunit RNA of Phytophthora megasperma, and phylogeny of the oomycetes. FEBS Lett. 1994 Jan 31;338(2):133–136. doi: 10.1016/0014-5793(94)80350-1. [DOI] [PubMed] [Google Scholar]
- Vogel J. P., Lee J. N., Kirsch D. R., Rose M. D., Sztul E. S. Brefeldin A causes a defect in secretion in Saccharomyces cerevisiae. J Biol Chem. 1993 Feb 15;268(5):3040–3043. [PubMed] [Google Scholar]
- Wada M., Kitada K., Saito M., Egawa K., Nakamura Y. cDNA sequence diversity and genomic clusters of major surface glycoprotein genes of Pneumocystis carinii. J Infect Dis. 1993 Oct;168(4):979–985. doi: 10.1093/infdis/168.4.979. [DOI] [PubMed] [Google Scholar]
- Wainright P. O., Hinkle G., Sogin M. L., Stickel S. K. Monophyletic origins of the metazoa: an evolutionary link with fungi. Science. 1993 Apr 16;260(5106):340–342. doi: 10.1126/science.8469985. [DOI] [PubMed] [Google Scholar]
- Wakefield A. E., Peters S. E., Banerji S., Bridge P. D., Hall G. S., Hawksworth D. L., Guiver L. A., Allen A. G., Hopkin J. M. Pneumocystis carinii shows DNA homology with the ustomycetous red yeast fungi. Mol Microbiol. 1992 Jul;6(14):1903–1911. doi: 10.1111/j.1365-2958.1992.tb01363.x. [DOI] [PubMed] [Google Scholar]
- Watowich S. S., Morimoto R. I. Complex regulation of heat shock- and glucose-responsive genes in human cells. Mol Cell Biol. 1988 Jan;8(1):393–405. doi: 10.1128/mcb.8.1.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams D. J., Radding J. A., Dell A., Khoo K. H., Rogers M. E., Richards F. F., Armstrong M. Y. Glucan synthesis in Pneumocystis carinii. J Protozool. 1991 Jul-Aug;38(4):427–437. doi: 10.1111/j.1550-7408.1991.tb01382.x. [DOI] [PubMed] [Google Scholar]
- Williamson D. H., Gardner M. J., Preiser P., Moore D. J., Rangachari K., Wilson R. J. The evolutionary origin of the 35 kb circular DNA of Plasmodium falciparum: new evidence supports a possible rhodophyte ancestry. Mol Gen Genet. 1994 Apr;243(2):249–252. doi: 10.1007/BF00280323. [DOI] [PubMed] [Google Scholar]
- Yoganathan T., Lin H., Buck G. A. An electrophoretic karyotype and assignment of ribosomal genes to resolved chromosomes of Pneumocystis carinii. Mol Microbiol. 1989 Nov;3(11):1473–1480. doi: 10.1111/j.1365-2958.1989.tb00132.x. [DOI] [PubMed] [Google Scholar]