Abstract
The variant surface glycoproteins (VSGs) of African trypanosomes form a dense surface coat on the bloodstream parasites. VSGs are immunodominant antigens that stimulate a rapid antibody response in trypanosome-infected individuals. In the present study, we examined VSG-specific antibodies present not only in sera from infected individuals but also in sera from individuals that had never been exposed to trypanosomes. Native antibodies against different VSGs were detected in sera from uninfected mice, bovines, and humans; the antibodies were revealed to be exclusively directed against variable determinants of the antigens. Further experimentation demonstrated that such native antibodies immunoreact with cellular components of mice and thus are most likely produced by the self-reactive B-cell compartment of the murine immune system.
Full Text
The Full Text of this article is available as a PDF (583.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Avrameas S. Natural autoantibodies: from 'horror autotoxicus' to 'gnothi seauton'. Immunol Today. 1991 May;12(5):154–159. doi: 10.1016/S0167-5699(05)80045-3. [DOI] [PubMed] [Google Scholar]
- Barry J. D., Turner C. M. The dynamics of antigenic variation and growth of African trypanosomes. Parasitol Today. 1991 Aug;7(8):207–211. doi: 10.1016/0169-4758(91)90143-c. [DOI] [PubMed] [Google Scholar]
- Black S. J., Sendashonga C. N., Webster P., Koch G. L., Shapiro S. Z. Regulation of parasite-specific antibody responses in resistant (C57BL/6) and susceptible (C3H/HE) mice infected with Trypanosoma (trypanozoon) brucei brucei. Parasite Immunol. 1986 Sep;8(5):425–442. doi: 10.1111/j.1365-3024.1986.tb00859.x. [DOI] [PubMed] [Google Scholar]
- Borst P., Rudenko G. Antigenic variation in African trypanosomes. Science. 1994 Jun 24;264(5167):1872–1873. doi: 10.1126/science.7516579. [DOI] [PubMed] [Google Scholar]
- Campbell G. H., Esser K. M., Phillips S. M. Trypanosoma rhodesiense infection in congenitally athymic (nude) mice. Infect Immun. 1978 Jun;20(3):714–720. doi: 10.1128/iai.20.3.714-720.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cross G. A. Cellular and genetic aspects of antigenic variation in trypanosomes. Annu Rev Immunol. 1990;8:83–110. doi: 10.1146/annurev.iy.08.040190.000503. [DOI] [PubMed] [Google Scholar]
- Cross G. A. Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology. 1975 Dec;71(3):393–417. doi: 10.1017/s003118200004717x. [DOI] [PubMed] [Google Scholar]
- De Gee A. L., Levine R. F., Mansfield J. M. Genetics of resistance to the African trypanosomes. VI. Heredity of resistance and variable surface glycoprotein-specific immune responses. J Immunol. 1988 Jan 1;140(1):283–288. [PubMed] [Google Scholar]
- Deflorin J., Rudolf M., Seebeck T. The major components of the paraflagellar rod of Trypanosoma brucei are two similar, but distinct proteins which are encoded by two different gene loci. J Biol Chem. 1994 Nov 18;269(46):28745–28751. [PubMed] [Google Scholar]
- Dempsey W. L., Mansfield J. M. Lymphocyte function in experimental African trypanosomiasis. V. Role of antibody and the mononuclear phagocyte system in variant-specific immunity. J Immunol. 1983 Jan;130(1):405–411. [PubMed] [Google Scholar]
- Freymann D., Down J., Carrington M., Roditi I., Turner M., Wiley D. 2.9 A resolution structure of the N-terminal domain of a variant surface glycoprotein from Trypanosoma brucei. J Mol Biol. 1990 Nov 5;216(1):141–160. doi: 10.1016/S0022-2836(05)80066-X. [DOI] [PubMed] [Google Scholar]
- Förster I., Rajewsky K. Expansion and functional activity of Ly-1+ B cells upon transfer of peritoneal cells into allotype-congenic, newborn mice. Eur J Immunol. 1987 Apr;17(4):521–528. doi: 10.1002/eji.1830170414. [DOI] [PubMed] [Google Scholar]
- Hemphill A., Affolter M., Seebeck T. A novel microtubule-binding motif identified in a high molecular weight microtubule-associated protein from Trypanosoma brucei. J Cell Biol. 1992 Apr;117(1):95–103. doi: 10.1083/jcb.117.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunter C. A., Jennings F. W., Tierney J. F., Murray M., Kennedy P. G. Correlation of autoantibody titres with central nervous system pathology in experimental African trypanosomiasis. J Neuroimmunol. 1992 Dec;41(2):143–148. doi: 10.1016/0165-5728(92)90064-r. [DOI] [PubMed] [Google Scholar]
- Jauberteau P. M., Bisser S., Ayed Z., Brindel I., Bouteille B., Stanghellini A., Gampo S., Doua F., Breton J. C., Dumas M. Détection d'autoanticorps anti-galactocérébrosides au cours de la trypanosomose humaine africaine. Bull Soc Pathol Exot. 1994;87(5):333–336. [PubMed] [Google Scholar]
- Kamper S. M., Barbet A. F. Surface epitope variation via mosaic gene formation is potential key to long-term survival of Trypanosoma brucei. Mol Biochem Parasitol. 1992 Jul;53(1-2):33–44. doi: 10.1016/0166-6851(92)90004-4. [DOI] [PubMed] [Google Scholar]
- Kemp M., Hansen M. B., Theander T. G. Recognition of Leishmania antigens by T lymphocytes from nonexposed individuals. Infect Immun. 1992 Jun;60(6):2246–2251. doi: 10.1128/iai.60.6.2246-2251.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konishi E. Naturally occurring antibodies that react with protozoan parasites. Parasitol Today. 1993 Oct;9(10):361–364. doi: 10.1016/0169-4758(93)90083-r. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Mansfield J. M., Kreier J. P. Autoimmunity in experimental Trypanosoma congolense infections of rabbits. Infect Immun. 1972 May;5(5):648–656. doi: 10.1128/iai.5.5.648-656.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mansfield J. M. T-cell responses to the trypanosome variant surface glycoprotein: a new paradigm? Parasitol Today. 1994 Jul;10(7):267–270. doi: 10.1016/0169-4758(94)90143-0. [DOI] [PubMed] [Google Scholar]
- Metcalf P., Blum M., Freymann D., Turner M., Wiley D. C. Two variant surface glycoproteins of Trypanosoma brucei of different sequence classes have similar 6 A resolution X-ray structures. Nature. 1987 Jan 1;325(6099):84–86. doi: 10.1038/325084a0. [DOI] [PubMed] [Google Scholar]
- Müller N., Hemphill A., Imboden M., Duvallet G., Dwinger R. H., Seebeck T. Identification and characterization of two repetitive non-variable antigens from African trypanosomes which are recognized early during infection. Parasitology. 1992 Feb;104(Pt 1):111–120. doi: 10.1017/s0031182000060856. [DOI] [PubMed] [Google Scholar]
- Müller N., Imboden M., Detmer E., Mansfield J. M., Seebeck T. Cytoskeleton-associated antigens from African trypanosomes are recognized by self-reactive antibodies of uninfected mice. Parasitology. 1993 Nov;107(Pt 4):411–417. doi: 10.1017/s0031182000067767. [DOI] [PubMed] [Google Scholar]
- Naessens J., Williams D. J. Characterization and measurement of CD5+ B cells in normal and Trypanosoma congolense-infected cattle. Eur J Immunol. 1992 Jul;22(7):1713–1718. doi: 10.1002/eji.1830220708. [DOI] [PubMed] [Google Scholar]
- Pays E. Genetics of antigenic variation in African trypanosomes. Res Microbiol. 1991 Jul-Aug;142(6):731–735. doi: 10.1016/0923-2508(91)90088-r. [DOI] [PubMed] [Google Scholar]
- Reinitz D. M., Mansfield J. M. T-cell-independent and T-cell-dependent B-cell responses to exposed variant surface glycoprotein epitopes in trypanosome-infected mice. Infect Immun. 1990 Jul;58(7):2337–2342. doi: 10.1128/iai.58.7.2337-2342.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roth C., Bringaud F., Layden R. E., Baltz T., Eisen H. Active late-appearing variable surface antigen genes in Trypanosoma equiperdum are constructed entirely from pseudogenes. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9375–9379. doi: 10.1073/pnas.86.23.9375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schleifer K. W., Mansfield J. M. Suppressor macrophages in African trypanosomiasis inhibit T cell proliferative responses by nitric oxide and prostaglandins. J Immunol. 1993 Nov 15;151(10):5492–5503. [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turner C. M., Aslam N., Smith E., Buchanan N., Tait A. The effects of genetic exchange on variable antigen expression in Trypanosoma brucei. Parasitology. 1991 Dec;103(Pt 3):379–386. doi: 10.1017/s0031182000059898. [DOI] [PubMed] [Google Scholar]
- Vanhamme L., Pays E. Control of gene expression in trypanosomes. Microbiol Rev. 1995 Jun;59(2):223–240. doi: 10.1128/mr.59.2.223-240.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Velásquez E., Reyes L., Thors C., Miettinen A., Chinchilla M., Linder E. Autoantibodies give false positive reactions in the serodiagnosis of Trypanosoma cruzi infection. Trans R Soc Trop Med Hyg. 1993 Jan-Feb;87(1):35–35. doi: 10.1016/0035-9203(93)90411-i. [DOI] [PubMed] [Google Scholar]
- Young R. A., Elliott T. J. Stress proteins, infection, and immune surveillance. Cell. 1989 Oct 6;59(1):5–8. doi: 10.1016/0092-8674(89)90861-1. [DOI] [PubMed] [Google Scholar]