Abstract
Strain F62 of Neisseria gonorrhoeae gonococci (GC) is sensitive to normal human serum unless CMP-N-acetylneuraminic acid (CMP-NANA) is present. NANA is transferred primarily to a 4.5-kDa lipooligosaccharide (LOS) structure by a GC sialyltransferase (Stase). We investigated LOS and Stase expression and serum resistance in strain F62 grown in different carbon sources and growth conditions. Pyruvate-grown GC expressed 1.9- to 5.6-fold more Stase activity than did glucose-grown GC, whereas lactate-grown GC generally expressed intermediate Stase activities. Broth-grown GC expressed two- to fourfold more Stase activity than did plate-grown GC in all carbon sources. Pyruvate- or lactate-grown GC expressed significantly more of the sialylateable 4.5-kDa LOS species than did glucose-grown GC. Anaerobically, the 4.5-kDa LOS species was expressed in greater quantity than the 4.9-kDa N-acetyl galactosamine-terminating species in all carbon sources. Pyruvate-grown GC also incorporated up to threefold more radiolabelled CMP-NANA onto the 4.5-kDa LOS species than did glucose-grown GC. In serum resistance studies, pyruvate-grown GC were 6.5- to 16.1-fold more serum resistant than glucose-grown GC at limiting CMP-NANA concentrations (1.56 to 12.50 microg/ml). Taken together, these results indicate that gonococcal expression of Stase activity is up-regulated by growth in pyruvate or lactate, which correlates with enhanced expression of the sialylateable 4.5-kDa LOS and, for growth in pyruvate, correlates with enhanced sialylation of gonococcal LOS and greater serum resistance. In different in vivo niches, gonococcal LOS sialylation, serum resistance, and interaction with host cells can be highly regulated.
Full Text
The Full Text of this article is available as a PDF (280.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Apicella M. A., Mandrell R. E., Shero M., Wilson M. E., Griffiss J. M., Brooks G. F., Lammel C., Breen J. F., Rice P. A. Modification by sialic acid of Neisseria gonorrhoeae lipooligosaccharide epitope expression in human urethral exudates: an immunoelectron microscopic analysis. J Infect Dis. 1990 Aug;162(2):506–512. doi: 10.1093/infdis/162.2.506. [DOI] [PubMed] [Google Scholar]
- Apicella M. A., Westerink M. A., Morse S. A., Schneider H., Rice P. A., Griffiss J. M. Bactericidal antibody response of normal human serum to the lipooligosaccharide of Neisseria gonorrhoeae. J Infect Dis. 1986 Mar;153(3):520–526. doi: 10.1093/infdis/153.3.520. [DOI] [PubMed] [Google Scholar]
- Botsford J. L., Harman J. G. Cyclic AMP in prokaryotes. Microbiol Rev. 1992 Mar;56(1):100–122. doi: 10.1128/mr.56.1.100-122.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bramley J., Demarco de Hormaeche R., Constantinidou C., Nassif X., Parsons N., Jones P., Smith H., Cole J. A serum-sensitive, sialyltransferase-deficient mutant of Neisseria gonorrhoeae defective in conversion to serum resistance by CMP-NANA or blood cell extracts. Microb Pathog. 1995 Mar;18(3):187–195. doi: 10.1016/s0882-4010(95)90040-3. [DOI] [PubMed] [Google Scholar]
- Britigan B. E., Chai Y., Cohen M. S. Effects of human serum on the growth and metabolism of Neisseria gonorrhoeae: an alternative view of serum. Infect Immun. 1985 Dec;50(3):738–744. doi: 10.1128/iai.50.3.738-744.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Britigan B. E., Cohen M. S. Effects of human serum on bacterial competition with neutrophils for molecular oxygen. Infect Immun. 1986 Jun;52(3):657–663. doi: 10.1128/iai.52.3.657-663.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Britigan B. E., Klapper D., Svendsen T., Cohen M. S. Phagocyte-derived lactate stimulates oxygen consumption by Neisseria gonorrhoeae. An unrecognized aspect of the oxygen metabolism of phagocytosis. J Clin Invest. 1988 Feb;81(2):318–324. doi: 10.1172/JCI113323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen M. S., Cooney M. H. A bacterial respiratory burst: stimulation of the metabolism of Neisseria gonorrhoeae by human serum. J Infect Dis. 1984 Jul;150(1):49–56. doi: 10.1093/infdis/150.1.49. [DOI] [PubMed] [Google Scholar]
- Constantinidou C., Beadle D., Zhou X. H., Parsons N. J., Sammons C. C., Cole J. A., Smith H. A high Mr factor in human blood which confers serum resistance on gonococci: some properties and synergism with CMP-NANA. Microb Pathog. 1992 Jun;12(6):421–432. doi: 10.1016/0882-4010(92)90005-9. [DOI] [PubMed] [Google Scholar]
- Darveau R. P., Hancock R. E. Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J Bacteriol. 1983 Aug;155(2):831–838. doi: 10.1128/jb.155.2.831-838.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emond J. P., Dublanchet A., Goldner M. Kinetics of conversion of Neisseria gonorrhoeae to resistance to complement by cytidine 5'-monophospho-N-acetyl neuraminic acid. Antonie Van Leeuwenhoek. 1995;67(3):281–288. doi: 10.1007/BF00873691. [DOI] [PubMed] [Google Scholar]
- Fischer R. S., Martin G. C., Rao P., Jensen R. A. Neisseria gonorrhoeae possesses two nicotinamide adenine dinucleotide-independent lactate dehydrogenases. FEMS Microbiol Lett. 1994 Jan 1;115(1):39–44. doi: 10.1111/j.1574-6968.1994.tb06611.x. [DOI] [PubMed] [Google Scholar]
- Frangipane J. V., Rest R. F. Anaerobic growth and cytidine 5'-monophospho-N-acetylneuraminic acid act synergistically to induce high-level serum resistance in Neisseria gonorrhoeae. Infect Immun. 1993 May;61(5):1657–1666. doi: 10.1128/iai.61.5.1657-1666.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fu H. S., Hassett D. J., Cohen M. S. Oxidant stress in Neisseria gonorrhoeae: adaptation and effects on L-(+)-lactate dehydrogenase activity. Infect Immun. 1989 Jul;57(7):2173–2178. doi: 10.1128/iai.57.7.2173-2178.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gotschlich E. C. Genetic locus for the biosynthesis of the variable portion of Neisseria gonorrhoeae lipooligosaccharide. J Exp Med. 1994 Dec 1;180(6):2181–2190. doi: 10.1084/jem.180.6.2181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hebeler B. H., Morse S. A. Physiology and metabolism of pathogenic neisseria: tricarboxylic acid cycle activity in Neisseria gonorrhoeae. J Bacteriol. 1976 Oct;128(1):192–201. doi: 10.1128/jb.128.1.192-201.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hitchcock P. J. Analyses of gonococcal lipopolysaccharide in whole-cell lysates by sodium dodecyl sulfate-polyacrylamide gel electrophoresis: stable association of lipopolysaccharide with the major outer membrane protein (protein I) of Neisseria gonorrhoeae. Infect Immun. 1984 Oct;46(1):202–212. doi: 10.1128/iai.46.1.202-212.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holten E., Jyssum K. Activities of some enzymes concerning pyruvate metabolism in Neisseria. Acta Pathol Microbiol Scand B Microbiol Immunol. 1974 Dec;82(6):843–848. doi: 10.1111/j.1699-0463.1974.tb02382.x. [DOI] [PubMed] [Google Scholar]
- Klimpel K. W., Lesley S. A., Clark V. L. Identification of subunits of gonococcal RNA polymerase by immunoblot analysis: evidence for multiple sigma factors. J Bacteriol. 1989 Jul;171(7):3713–3718. doi: 10.1128/jb.171.7.3713-3718.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knapp J. S., Clark V. L. Anaerobic growth of Neisseria gonorrhoeae coupled to nitrite reduction. Infect Immun. 1984 Oct;46(1):176–181. doi: 10.1128/iai.46.1.176-181.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lesse A. J., Campagnari A. A., Bittner W. E., Apicella M. A. Increased resolution of lipopolysaccharides and lipooligosaccharides utilizing tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Immunol Methods. 1990 Jan 24;126(1):109–117. doi: 10.1016/0022-1759(90)90018-q. [DOI] [PubMed] [Google Scholar]
- Mandrell R. E., Apicella M. A. Lipo-oligosaccharides (LOS) of mucosal pathogens: molecular mimicry and host-modification of LOS. Immunobiology. 1993 Apr;187(3-5):382–402. doi: 10.1016/S0171-2985(11)80352-9. [DOI] [PubMed] [Google Scholar]
- Mandrell R. E., Lesse A. J., Sugai J. V., Shero M., Griffiss J. M., Cole J. A., Parsons N. J., Smith H., Morse S. A., Apicella M. A. In vitro and in vivo modification of Neisseria gonorrhoeae lipooligosaccharide epitope structure by sialylation. J Exp Med. 1990 May 1;171(5):1649–1664. doi: 10.1084/jem.171.5.1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mandrell R. E., Smith H., Jarvis G. A., Griffiss J. M., Cole J. A. Detection and some properties of the sialyltransferase implicated in the sialylation of lipopolysaccharide of Neisseria gonorrhoeae. Microb Pathog. 1993 Apr;14(4):307–313. doi: 10.1006/mpat.1993.1030. [DOI] [PubMed] [Google Scholar]
- McGee D. J., Chen G. C., Rest R. F. Expression of sialyltransferase is not required for interaction of Neisseria gonorrhoeae with human epithelial cells and human neutrophils. Infect Immun. 1996 Oct;64(10):4129–4136. doi: 10.1128/iai.64.10.4129-4136.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morriss D. M., Lawson J. W. Cyclic adenosine 3', 5'-monophosphate in Neisseria gonorrhoeae. Can J Microbiol. 1979 Feb;25(2):235–237. doi: 10.1139/m79-037. [DOI] [PubMed] [Google Scholar]
- Morse S. A., Bartenstein L. Factors affecting autolysis of Neisseria gonorrhoeae. Proc Soc Exp Biol Med. 1974 Apr;145(4):1418–1421. doi: 10.3181/00379727-145-38025. [DOI] [PubMed] [Google Scholar]
- Morse S. A., Bartenstein L., Wegener W. S. Absence of 3',5'-cyclic adenosine monophosphate and related enzymes in Neisseria gonorrhoeae. Proc Soc Exp Biol Med. 1977 May;155(1):35–39. doi: 10.3181/00379727-155-39739. [DOI] [PubMed] [Google Scholar]
- Morse S. A., Hebeler B. H. Effect of pH on the growth and glucose metabolism of Neisseria gonorrhoeae. Infect Immun. 1978 Jul;21(1):87–95. doi: 10.1128/iai.21.1.87-95.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morse S. A., Mintz C. S., Sarafian S. K., Bartenstein L., Bertram M., Apicella M. A. Effect of dilution rate on lipopolysaccharide and serum resistance of Neisseria gonorrhoeae grown in continuous culture. Infect Immun. 1983 Jul;41(1):74–82. doi: 10.1128/iai.41.1.74-82.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morse S. A., Stein S., Hines J. Glucose metabolism in Neisseria gonorrhoeae. J Bacteriol. 1974 Nov;120(2):702–714. doi: 10.1128/jb.120.2.702-714.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nairn C. A., Cole J. A., Patel P. V., Parsons N. J., Fox J. E., Smith H. Cytidine 5'-monophospho-N-acetylneuraminic acid or a related compound is the low Mr factor from human red blood cells which induces gonococcal resistance to killing by human serum. J Gen Microbiol. 1988 Dec;134(12):3295–3306. doi: 10.1099/00221287-134-12-3295. [DOI] [PubMed] [Google Scholar]
- Norrod E. P. A role for sulfite in inducing surface changes in Neisseria gonorrhoeae. Can J Microbiol. 1984 Oct;30(10):1297–1301. doi: 10.1139/m84-207. [DOI] [PubMed] [Google Scholar]
- Norrod E. P., Burnham J. S., Williams R. P., Ding M. J. Induced changes in the surface of Neisseria gonorrhoeae. Can J Microbiol. 1983 May;29(5):584–592. doi: 10.1139/m83-091. [DOI] [PubMed] [Google Scholar]
- Parkinson J. S., Kofoid E. C. Communication modules in bacterial signaling proteins. Annu Rev Genet. 1992;26:71–112. doi: 10.1146/annurev.ge.26.120192.000443. [DOI] [PubMed] [Google Scholar]
- Parsons N. J., Andrade J. R., Patel P. V., Cole J. A., Smith H. Sialylation of lipopolysaccharide and loss of absorption of bactericidal antibody during conversion of gonococci to serum resistance by cytidine 5'-monophospho-N-acetyl neuraminic acid. Microb Pathog. 1989 Jul;7(1):63–72. doi: 10.1016/0882-4010(89)90112-5. [DOI] [PubMed] [Google Scholar]
- Parsons N. J., Boons G. J., Ashton P. R., Redfern P. D., Quirk P., Gao Y., Constantinidou C., Patel J., Bramley J., Cole J. A. Lactic acid is the factor in blood cell extracts which enhances the ability of CMP-NANA to sialylate gonococcal lipopolysaccharide and induce serum resistance. Microb Pathog. 1996 Feb;20(2):87–100. doi: 10.1006/mpat.1996.0008. [DOI] [PubMed] [Google Scholar]
- Parsons N. J., Constantinidou C., Cole J. A., Smith H. Sialylation of lipopolysaccharide by CMP-NANA in viable gonococci is enhanced by low Mr material released from blood cell extracts but not by some UDP sugars. Microb Pathog. 1994 Jun;16(6):413–421. doi: 10.1006/mpat.1994.1041. [DOI] [PubMed] [Google Scholar]
- Parsons N. J., Patel P. V., Tan E. L., Andrade J. R., Nairn C. A., Goldner M., Cole J. A., Smith H. Cytidine 5'-monophospho-N-acetyl neuraminic acid and a low molecular weight factor from human blood cells induce lipopolysaccharide alteration in gonococci when conferring resistance to killing by human serum. Microb Pathog. 1988 Oct;5(4):303–309. doi: 10.1016/0882-4010(88)90103-9. [DOI] [PubMed] [Google Scholar]
- Pettit R. K., Martin E. S., Wagner S. M., Bertolino V. J. Phenotypic modulation of gonococcal lipooligosaccharide in acidic and alkaline culture. Infect Immun. 1995 Jul;63(7):2773–2775. doi: 10.1128/iai.63.7.2773-2775.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rest R. F., Mandrell R. E. Neisseria sialytransferases and their role in pathogenesis. Microb Pathog. 1995 Dec;19(6):379–390. doi: 10.1006/mpat.1995.0073. [DOI] [PubMed] [Google Scholar]
- Schoolnik G. K., Buchanan T. M., Holmes K. K. Gonococci causing disseminated gonococcal infection are resistant to the bactericidal action of normal human sera. J Clin Invest. 1976 Nov;58(5):1163–1173. doi: 10.1172/JCI108569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Smith H., Cole J. A., Parsons N. J. The sialylation of gonococcal lipopolysaccharide by host factors: a major impact on pathogenicity. FEMS Microbiol Lett. 1992 Dec 15;100(1-3):287–292. doi: 10.1111/j.1574-6968.1992.tb14054.x. [DOI] [PubMed] [Google Scholar]
- Smith H., Parsons N. J., Cole J. A. Sialylation of neisserial lipopolysaccharide: a major influence on pathogenicity. Microb Pathog. 1995 Dec;19(6):365–377. doi: 10.1006/mpat.1995.0071. [DOI] [PubMed] [Google Scholar]
- Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 1;119(1):115–119. doi: 10.1016/0003-2697(82)90673-x. [DOI] [PubMed] [Google Scholar]
- Veale D. R., Penn C. W., Smith H. Factors affecting the induction of phenotypically determined serum resistance of Neisseria gonorrhoeae grown in media containing serum or its diffusible components. J Gen Microbiol. 1981 Feb;122(2):235–245. doi: 10.1099/00221287-122-2-235. [DOI] [PubMed] [Google Scholar]
- Ward M. E., Watt P. J., Glynn A. A. Gonococci in urethral exudates possess a virulence factor lost on subculture. Nature. 1970 Jul 25;227(5256):382–384. doi: 10.1038/227382a0. [DOI] [PubMed] [Google Scholar]
- Wiseman G. M., Caird J. D. Composition of the lipopolysaccharide of Neisseria gonorrhoeae. Infect Immun. 1977 May;16(2):550–556. doi: 10.1128/iai.16.2.550-556.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
