Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Nov;64(11):4665–4672. doi: 10.1128/iai.64.11.4665-4672.1996

Association of RTX toxins with erythrocytes.

M E Bauer 1, R A Welch 1
PMCID: PMC174429  PMID: 8890223

Abstract

A critical step in the target cell attack by RTX cytotoxins is their association with target cells. A binding assay was used to study the association of the Escherichia coli hemolysin protein (HlyA) with erythrocytes. Several parameters required for lysis by HlyA were tested for their effects on its initial association with erythrocytes. The results demonstrate that HlyA binding to target cells is independent of several structural components of the active toxin, including the N-terminal hydrophobic region, the glycine-rich repeat region, and the HlyC-dependent acylation of HlyA. Further, the association with erythrocytes was independent of Ca2+ concentration or temperature, while the lytic event is both Ca2+ dependent and temperature dependent. The association of two other RTX toxin proteins, the Pasteurella haemolytica leukotoxin (LktA) and the enterohemorrhagic E. coli toxin (EhxA), were also examined; these toxins bound to erythrocytes much less efficiently than did HlyA. The association of HlyA with erythrocytes occurred rapidly, within 12 s of incubation, and demonstrated no measurable dissociation. HlyA bound to erythrocytes with a maximum of approximately 2,000 molecules per cell. Competition between active HlyA and unacylated HlyA demonstrated no inhibition of binding by unacylated HlyA; rather, active HlyA appeared to displace unacylated HlyA on the cell surface. These data demonstrate that binding and lysis by HlyA are separable events and challenge the concept of nonspecific binding to the cell surface by RTX toxins.

Full Text

The Full Text of this article is available as a PDF (362.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauer M. E., Welch R. A. Characterization of an RTX toxin from enterohemorrhagic Escherichia coli O157:H7. Infect Immun. 1996 Jan;64(1):167–175. doi: 10.1128/iai.64.1.167-175.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boehm D. F., Welch R. A., Snyder I. S. Calcium is required for binding of Escherichia coli hemolysin (HlyA) to erythrocyte membranes. Infect Immun. 1990 Jun;58(6):1951–1958. doi: 10.1128/iai.58.6.1951-1958.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boehm D. F., Welch R. A., Snyder I. S. Domains of Escherichia coli hemolysin (HlyA) involved in binding of calcium and erythrocyte membranes. Infect Immun. 1990 Jun;58(6):1959–1964. doi: 10.1128/iai.58.6.1959-1964.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cavalieri S. J., Snyder I. S. Effect of Escherichia coli alpha-hemolysin on human peripheral leukocyte viability in vitro. Infect Immun. 1982 May;36(2):455–461. doi: 10.1128/iai.36.2.455-461.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen L., Coleman W. G., Jr Cloning and characterization of the Escherichia coli K-12 rfa-2 (rfaC) gene, a gene required for lipopolysaccharide inner core synthesis. J Bacteriol. 1993 May;175(9):2534–2540. doi: 10.1128/jb.175.9.2534-2540.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clinkenbeard K. D., Mosier D. A., Confer A. W. Transmembrane pore size and role of cell swelling in cytotoxicity caused by Pasteurella haemolytica leukotoxin. Infect Immun. 1989 Feb;57(2):420–425. doi: 10.1128/iai.57.2.420-425.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cruz W. T., Young R., Chang Y. F., Struck D. K. Deletion analysis resolves cell-binding and lytic domains of the Pasteurella leukotoxin. Mol Microbiol. 1990 Nov;4(11):1933–1939. doi: 10.1111/j.1365-2958.1990.tb02042.x. [DOI] [PubMed] [Google Scholar]
  8. Eberspächer B., Hugo F., Bhakdi S. Quantitative study of the binding and hemolytic efficiency of Escherichia coli hemolysin. Infect Immun. 1989 Mar;57(3):983–988. doi: 10.1128/iai.57.3.983-988.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Felmlee T., Welch R. A. Alterations of amino acid repeats in the Escherichia coli hemolysin affect cytolytic activity and secretion. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5269–5273. doi: 10.1073/pnas.85.14.5269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Forestier C., Welch R. A. Identification of RTX toxin target cell specificity domains by use of hybrid genes. Infect Immun. 1991 Nov;59(11):4212–4220. doi: 10.1128/iai.59.11.4212-4220.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grimminger F., Scholz C., Bhakdi S., Seeger W. Subhemolytic doses of Escherichia coli hemolysin evoke large quantities of lipoxygenase products in human neutrophils. J Biol Chem. 1991 Aug 5;266(22):14262–14269. [PubMed] [Google Scholar]
  12. Grimminger F., Sibelius U., Bhakdi S., Suttorp N., Seeger W. Escherichia coli hemolysin is a potent inductor of phosphoinositide hydrolysis and related metabolic responses in human neutrophils. J Clin Invest. 1991 Nov;88(5):1531–1539. doi: 10.1172/JCI115463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hewlett E. L., Gray M. C., Ehrmann I. E., Maloney N. J., Otero A. S., Gray L., Allietta M., Szabo G., Weiss A. A., Barry E. M. Characterization of adenylate cyclase toxin from a mutant of Bordetella pertussis defective in the activator gene, cyaC. J Biol Chem. 1993 Apr 15;268(11):7842–7848. [PubMed] [Google Scholar]
  14. Issartel J. P., Koronakis V., Hughes C. Activation of Escherichia coli prohaemolysin to the mature toxin by acyl carrier protein-dependent fatty acylation. Nature. 1991 Jun 27;351(6329):759–761. doi: 10.1038/351759a0. [DOI] [PubMed] [Google Scholar]
  15. Kaehler K. L., Markham R. J., Muscoplat C. C., Johnson D. W. Evidence of species specificity in the cytocidal effects of Pasteurella haemolytica. Infect Immun. 1980 Nov;30(2):615–616. doi: 10.1128/iai.30.2.615-616.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kenny B., Haigh R., Holland I. B. Analysis of the haemolysin transport process through the secretion from Escherichia coli of PCM, CAT or beta-galactosidase fused to the Hly C-terminal signal domain. Mol Microbiol. 1991 Oct;5(10):2557–2568. doi: 10.1111/j.1365-2958.1991.tb02102.x. [DOI] [PubMed] [Google Scholar]
  17. König B., König W. Roles of human peripheral blood leukocyte protein kinase C and G proteins in inflammatory mediator release by isogenic Escherichia coli strains. Infect Immun. 1991 Oct;59(10):3801–3810. doi: 10.1128/iai.59.10.3801-3810.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Leeds J. A., Welch R. A. RfaH enhances elongation of Escherichia coli hlyCABD mRNA. J Bacteriol. 1996 Apr;178(7):1850–1857. doi: 10.1128/jb.178.7.1850-1857.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ludwig A., Jarchau T., Benz R., Goebel W. The repeat domain of Escherichia coli haemolysin (HlyA) is responsible for its Ca2+-dependent binding to erythrocytes. Mol Gen Genet. 1988 Nov;214(3):553–561. doi: 10.1007/BF00330494. [DOI] [PubMed] [Google Scholar]
  20. Moayeri M., Welch R. A. Effects of temperature, time, and toxin concentration on lesion formation by the Escherichia coli hemolysin. Infect Immun. 1994 Oct;62(10):4124–4134. doi: 10.1128/iai.62.10.4124-4134.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Oropeza-Wekerle R. L., Müller E., Kern P., Meyermann R., Goebel W. Synthesis, inactivation, and localization of extracellular and intracellular Escherichia coli hemolysins. J Bacteriol. 1989 May;171(5):2783–2788. doi: 10.1128/jb.171.5.2783-2788.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ostolaza H., Goñi F. M. Interaction of the bacterial protein toxin alpha-haemolysin with model membranes: protein binding does not always lead to lytic activity. FEBS Lett. 1995 Sep 11;371(3):303–306. doi: 10.1016/0014-5793(95)00927-2. [DOI] [PubMed] [Google Scholar]
  23. Pellett S., Boehm D. F., Snyder I. S., Rowe G., Welch R. A. Characterization of monoclonal antibodies against the Escherichia coli hemolysin. Infect Immun. 1990 Mar;58(3):822–827. doi: 10.1128/iai.58.3.822-827.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rennie R. P., Freer J. H., Arbuthnott J. P. The kinetics of erythrocyte lysis by Escherichia coli haemolysin. J Med Microbiol. 1974 May;7(2):189–195. doi: 10.1099/00222615-7-2-189. [DOI] [PubMed] [Google Scholar]
  25. Rowe G. E., Pellett S., Welch R. A. Analysis of toxinogenic functions associated with the RTX repeat region and monoclonal antibody D12 epitope of Escherichia coli hemolysin. Infect Immun. 1994 Feb;62(2):579–588. doi: 10.1128/iai.62.2.579-588.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schmidt H., Beutin L., Karch H. Molecular analysis of the plasmid-encoded hemolysin of Escherichia coli O157:H7 strain EDL 933. Infect Immun. 1995 Mar;63(3):1055–1061. doi: 10.1128/iai.63.3.1055-1061.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schmidt H., Karch H., Beutin L. The large-sized plasmids of enterohemorrhagic Escherichia coli O157 strains encode hemolysins which are presumably members of the E. coli alpha-hemolysin family. FEMS Microbiol Lett. 1994 Apr 1;117(2):189–196. doi: 10.1111/j.1574-6968.1994.tb06763.x. [DOI] [PubMed] [Google Scholar]
  28. Shewen P. E., Wilkie B. N. Cytotoxin of Pasteurella haemolytica acting on bovine leukocytes. Infect Immun. 1982 Jan;35(1):91–94. doi: 10.1128/iai.35.1.91-94.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stanley P., Packman L. C., Koronakis V., Hughes C. Fatty acylation of two internal lysine residues required for the toxic activity of Escherichia coli hemolysin. Science. 1994 Dec 23;266(5193):1992–1996. doi: 10.1126/science.7801126. [DOI] [PubMed] [Google Scholar]
  30. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Welch R. A., Bauer M. E., Kent A. D., Leeds J. A., Moayeri M., Regassa L. B., Swenson D. L. Battling against host phagocytes: the wherefore of the RTX family of toxins? Infect Agents Dis. 1995 Dec;4(4):254–272. [PubMed] [Google Scholar]
  32. Welch R. A., Dellinger E. P., Minshew B., Falkow S. Haemolysin contributes to virulence of extra-intestinal E. coli infections. Nature. 1981 Dec 17;294(5842):665–667. doi: 10.1038/294665a0. [DOI] [PubMed] [Google Scholar]
  33. Welch R. A., Hull R., Falkow S. Molecular cloning and physical characterization of a chromosomal hemolysin from Escherichia coli. Infect Immun. 1983 Oct;42(1):178–186. doi: 10.1128/iai.42.1.178-186.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Welch R. A. Identification of two different hemolysin determinants in uropathogenic Proteus isolates. Infect Immun. 1987 Sep;55(9):2183–2190. doi: 10.1128/iai.55.9.2183-2190.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Welch R. A., Pellett S. Transcriptional organization of the Escherichia coli hemolysin genes. J Bacteriol. 1988 Apr;170(4):1622–1630. doi: 10.1128/jb.170.4.1622-1630.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. van Leengoed L. A., Dickerson H. W. Influence of calcium on secretion and activity of the cytolysins of Actinobacillus pleuropneumoniae. Infect Immun. 1992 Feb;60(2):353–359. doi: 10.1128/iai.60.2.353-359.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES