Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Infection and Immunity logoLink to Infection and Immunity
. 1996 Nov;64(11):4680–4685. doi: 10.1128/iai.64.11.4680-4685.1996

Candida albicans binding to the oral bacterium Streptococcus gordonii involves multiple adhesin-receptor interactions.

A R Holmes 1, R McNab 1, H F Jenkinson 1
PMCID: PMC174431  PMID: 8890225

Abstract

Candida albicans binds to several species of oral streptococci, in particular Streptococcus gordonii, through recognition of a streptococcal cell wall polysaccharide receptor (A. R. Holmes, P. K. Gopal, and H. F. Jenkinson, Infect. Immun. 63:1827-1834, 1995). We now show that isogenic cell surface protein mutants of S. gordonii DL1, unaltered in expression of cell wall polysaccharide, are reduced in ability to support adherence of C. albicans cells in a solid-phase assay. Inactivation of the S. gordonii cshA and cshB genes, encoding high-molecular-mass cell surface polypeptides, and inactivation of the sspA and sspB genes, encoding antigen I/II salivary adhesins, resulted in 40 and 79% reductions, respectively, in adherence of C. albicans cells. Inactivation of the S. gordonii scaA gene encoding a cell surface lipoprotein had no effect on C. albicans adherence. Polyclonal antiserum to streptococcal antigen I/II protein SpaP and antibodies specific to the amino-terminal nonrepetitive (NR) domain of CshA both inhibited adherence of C. albicans to S. gordonii cells. Conversely antibodies to the amino acid repeat block repetitive (R) domain of CshA, or to ScaA, did not inhibit C. albicans adherence. Immobilized recombinant polypeptide fragments of CshA comprising NR domain or R domain sequences both supported adherence of C. albicans cells. Expression of S. gordonii SspB protein on the surface of Enterococcus faecalis conferred on the enterococcal cells the ability to bind C. albicans, and this was ablated by antigen I/II antiserum. Collectively the results suggest that interaction of C. albicans with S. gordonii is mediated by a complement of adhesin-receptor interactions that involves two families of streptococcal multifunctional polypeptide adhesins, bacterial cell wall polysaccharide, and as yet unidentified yeast cell surface components.

Full Text

The Full Text of this article is available as a PDF (252.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen R. N., Ganeshkumar N., Kolenbrander P. E. Cloning of the Streptococcus gordonii PK488 gene, encoding an adhesin which mediates coaggregation with Actinomyces naeslundii PK606. Infect Immun. 1993 Mar;61(3):981–987. doi: 10.1128/iai.61.3.981-987.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bouchara J. P., Tronchin G., Annaix V., Robert R., Senet J. M. Laminin receptors on Candida albicans germ tubes. Infect Immun. 1990 Jan;58(1):48–54. doi: 10.1128/iai.58.1.48-54.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cannon R. D., Holmes A. R., Mason A. B., Monk B. C. Oral Candida: clearance, colonization, or candidiasis? J Dent Res. 1995 May;74(5):1152–1161. doi: 10.1177/00220345950740050301. [DOI] [PubMed] [Google Scholar]
  4. Cisar J. O., Kolenbrander P. E., McIntire F. C. Specificity of coaggregation reactions between human oral streptococci and strains of Actinomyces viscosus or Actinomyces naeslundii. Infect Immun. 1979 Jun;24(3):742–752. doi: 10.1128/iai.24.3.742-752.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Demuth D. R., Berthold P., Leboy P. S., Golub E. E., Davis C. A., Malamud D. Saliva-mediated aggregation of Enterococcus faecalis transformed with a Streptococcus sanguis gene encoding the SSP-5 surface antigen. Infect Immun. 1989 May;57(5):1470–1475. doi: 10.1128/iai.57.5.1470-1475.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Demuth D. R., Davis C. A., Corner A. M., Lamont R. J., Leboy P. S., Malamud D. Cloning and expression of a Streptococcus sanguis surface antigen that interacts with a human salivary agglutinin. Infect Immun. 1988 Sep;56(9):2484–2490. doi: 10.1128/iai.56.9.2484-2490.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Demuth D. R., Duan Y., Brooks W., Holmes A. R., McNab R., Jenkinson H. F. Tandem genes encode cell-surface polypeptides SspA and SspB which mediate adhesion of the oral bacterium Streptococcus gordonii to human and bacterial receptors. Mol Microbiol. 1996 Apr;20(2):403–413. doi: 10.1111/j.1365-2958.1996.tb02627.x. [DOI] [PubMed] [Google Scholar]
  8. Demuth D. R., Golub E. E., Malamud D. Streptococcal-host interactions. Structural and functional analysis of a Streptococcus sanguis receptor for a human salivary glycoprotein. J Biol Chem. 1990 May 5;265(13):7120–7126. [PubMed] [Google Scholar]
  9. Holmes A. R., Gopal P. K., Jenkinson H. F. Adherence of Candida albicans to a cell surface polysaccharide receptor on Streptococcus gordonii. Infect Immun. 1995 May;63(5):1827–1834. doi: 10.1128/iai.63.5.1827-1834.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Holmes A. R., Shepherd M. G. Nutritional factors determine germ tube formation in Candida albicans. J Med Vet Mycol. 1988 Apr;26(2):127–131. [PubMed] [Google Scholar]
  11. Hostetter M. K. Adhesins and ligands involved in the interaction of Candida spp. with epithelial and endothelial surfaces. Clin Microbiol Rev. 1994 Jan;7(1):29–42. doi: 10.1128/cmr.7.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hsu L. Y., Minah G. E., Peterson D. E., Wingard J. R., Merz W. G., Altomonte V., Tylenda C. A. Coaggregation of oral Candida isolates with bacteria from bone marrow transplant recipients. J Clin Microbiol. 1990 Dec;28(12):2621–2626. doi: 10.1128/jcm.28.12.2621-2626.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jenkinson H. F., Baker R. A., Tannock G. W. A binding-lipoprotein-dependent oligopeptide transport system in Streptococcus gordonii essential for uptake of hexa- and heptapeptides. J Bacteriol. 1996 Jan;178(1):68–77. doi: 10.1128/jb.178.1.68-77.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jenkinson H. F. Cell surface protein receptors in oral streptococci. FEMS Microbiol Lett. 1994 Aug 15;121(2):133–140. doi: 10.1111/j.1574-6968.1994.tb07089.x. [DOI] [PubMed] [Google Scholar]
  15. Jenkinson H. F. Genetic analysis of adherence by oral streptococci. J Ind Microbiol. 1995 Sep;15(3):186–192. doi: 10.1007/BF01569824. [DOI] [PubMed] [Google Scholar]
  16. Jenkinson H. F., Lala H. C., Shepherd M. G. Coaggregation of Streptococcus sanguis and other streptococci with Candida albicans. Infect Immun. 1990 May;58(5):1429–1436. doi: 10.1128/iai.58.5.1429-1436.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jenkinson H. F., Terry S. D., McNab R., Tannock G. W. Inactivation of the gene encoding surface protein SspA in Streptococcus gordonii DL1 affects cell interactions with human salivary agglutinin and oral actinomyces. Infect Immun. 1993 Aug;61(8):3199–3208. doi: 10.1128/iai.61.8.3199-3208.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kelly C. G., Todryk S., Kendal H. L., Munro G. H., Lehner T. T-cell, adhesion, and B-cell epitopes of the cell surface Streptococcus mutans protein antigen I/II. Infect Immun. 1995 Sep;63(9):3649–3658. doi: 10.1128/iai.63.9.3649-3658.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Klotz S. A., Rutten M. J., Smith R. L., Babcock S. R., Cunningham M. D. Adherence of Candida albicans to immobilized extracellular matrix proteins is mediated by calcium-dependent surface glycoproteins. Microb Pathog. 1993 Feb;14(2):133–147. doi: 10.1006/mpat.1993.1014. [DOI] [PubMed] [Google Scholar]
  20. Klotz S. A., Smith R. L. A fibronectin receptor on Candida albicans mediates adherence of the fungus to extracellular matrix. J Infect Dis. 1991 Mar;163(3):604–610. doi: 10.1093/infdis/163.3.604. [DOI] [PubMed] [Google Scholar]
  21. Kolenbrander P. E., Andersen R. N., Ganeshkumar N. Nucleotide sequence of the Streptococcus gordonii PK488 coaggregation adhesin gene, scaA, and ATP-binding cassette. Infect Immun. 1994 Oct;62(10):4469–4480. doi: 10.1128/iai.62.10.4469-4480.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kolenbrander P. E., Andersen R. N. Multigeneric aggregations among oral bacteria: a network of independent cell-to-cell interactions. J Bacteriol. 1986 Nov;168(2):851–859. doi: 10.1128/jb.168.2.851-859.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kolenbrander P. E., London J. Adhere today, here tomorrow: oral bacterial adherence. J Bacteriol. 1993 Jun;175(11):3247–3252. doi: 10.1128/jb.175.11.3247-3252.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lamont R. J., Gil S., Demuth D. R., Malamud D., Rosan B. Molecules of Streptococcus gordonii that bind to Porphyromonas gingivalis. Microbiology. 1994 Apr;140(Pt 4):867–872. doi: 10.1099/00221287-140-4-867. [DOI] [PubMed] [Google Scholar]
  25. López-Ribot J. L., Chaffin W. L. Binding of the extracellular matrix component entactin to Candida albicans. Infect Immun. 1994 Oct;62(10):4564–4571. doi: 10.1128/iai.62.10.4564-4571.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ma J. K., Kelly C. G., Munro G., Whiley R. A., Lehner T. Conservation of the gene encoding streptococcal antigen I/II in oral streptococci. Infect Immun. 1991 Aug;59(8):2686–2694. doi: 10.1128/iai.59.8.2686-2694.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McNab R., Holmes A. R., Clarke J. M., Tannock G. W., Jenkinson H. F. Cell surface polypeptide CshA mediates binding of Streptococcus gordonii to other oral bacteria and to immobilized fibronectin. Infect Immun. 1996 Oct;64(10):4204–4210. doi: 10.1128/iai.64.10.4204-4210.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McNab R., Jenkinson H. F. Gene disruption identifies a 290 kDa cell-surface polypeptide conferring hydrophobicity and coaggregation properties in Streptococcus gordonii. Mol Microbiol. 1992 Oct;6(20):2939–2949. doi: 10.1111/j.1365-2958.1992.tb01753.x. [DOI] [PubMed] [Google Scholar]
  29. McNab R., Jenkinson H. F., Loach D. M., Tannock G. W. Cell-surface-associated polypeptides CshA and CshB of high molecular mass are colonization determinants in the oral bacterium Streptococcus gordonii. Mol Microbiol. 1994 Nov;14(4):743–754. doi: 10.1111/j.1365-2958.1994.tb01311.x. [DOI] [PubMed] [Google Scholar]
  30. Nègre E., Vogel T., Levanon A., Guy R., Walsh T. J., Roberts D. D. The collagen binding domain of fibronectin contains a high affinity binding site for Candida albicans. J Biol Chem. 1994 Sep 2;269(35):22039–22045. [PubMed] [Google Scholar]
  31. PAKULA R., WALCZAK W. On the nature of competence of transformable streptococci. J Gen Microbiol. 1963 Apr;31:125–133. doi: 10.1099/00221287-31-1-125. [DOI] [PubMed] [Google Scholar]
  32. Pittet D., Monod M., Suter P. M., Frenk E., Auckenthaler R. Candida colonization and subsequent infections in critically ill surgical patients. Ann Surg. 1994 Dec;220(6):751–758. doi: 10.1097/00000658-199412000-00008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Santoni G., Gismondi A., Liu J. H., Punturieri A., Santoni A., Frati L., Piccoli M., Djeu J. Y. Candida albicans expresses a fibronectin receptor antigenically related to alpha 5 beta 1 integrin. Microbiology. 1994 Nov;140(Pt 11):2971–2979. doi: 10.1099/13500872-140-11-2971. [DOI] [PubMed] [Google Scholar]
  34. Vazquez J. A., Sobel J. D., Demitriou R., Vaishampayan J., Lynch M., Zervos M. J. Karyotyping of Candida albicans isolates obtained longitudinally in women with recurrent vulvovaginal candidiasis. J Infect Dis. 1994 Dec;170(6):1566–1569. doi: 10.1093/infdis/170.6.1566. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES