Skip to main content
Sexually Transmitted Infections logoLink to Sexually Transmitted Infections
. 2001 Oct;77(5):366–369. doi: 10.1136/sti.77.5.366

Macrophages are increased in cervical epithelium of women with cervicitis

M Prakash 1, S Patterson 1, M Kapembwa 1
PMCID: PMC1744354  PMID: 11588284

Abstract

Conflict of interest: None.

Background: Sexually transmitted diseases (STIs) are major causes of morbidity in women. The mechanisms involved in establishment of genital mucosal infection are poorly defined.

Objective: To investigate changes in cervical epithelial (CE) CD45+ cell subpopulations in women with microscopic evidence of cervicitis (n=9) and those without (n=12).

Methods: CE samples were obtained using cytobrush including matched venous blood. CE and peripheral blood (PB) mononuclear cells were analysed by flow cytometry for CD3+, CD4+, CD8+, CD14+,CD19+, and HLA-DR+ expression.

Results: Women with cervicitis had increased CE macrophages compared with those without (p<0.05). MHC class II+ cells were predominant in all cervical samples. Considerably fewer B lymphocytes were found in cervical samples in both groups of women. No changes were observed in cervical T lymphocyte subsets. However, a relative CD8+ lymphocytosis in PB was noted in women with cervicitis.

Conclusion: The increased numbers of CE macrophages in women with cervicitis may have important implications for pathogenesis of STIs including human immunodeficiency virus infection.

Key Words: cervicitis; macrophages; flow cytometry

Full Text

The Full Text of this article is available as a PDF (94.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bomsel M. Transcytosis of infectious human immunodeficiency virus across a tight human epithelial cell line barrier. Nat Med. 1997 Jan;3(1):42–47. doi: 10.1038/nm0197-42. [DOI] [PubMed] [Google Scholar]
  2. Brunham R. C., Paavonen J., Stevens C. E., Kiviat N., Kuo C. C., Critchlow C. W., Holmes K. K. Mucopurulent cervicitis--the ignored counterpart in women of urethritis in men. N Engl J Med. 1984 Jul 5;311(1):1–6. doi: 10.1056/NEJM198407053110101. [DOI] [PubMed] [Google Scholar]
  3. Butz E. A., Bevan M. J. Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity. 1998 Feb;8(2):167–175. doi: 10.1016/s1074-7613(00)80469-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cohen C. R., Plummer F. A., Mugo N., Maclean I., Shen C., Bukusi E. A., Irungu E., Sinei S., Bwayo J., Brunham R. C. Increased interleukin-10 in the the endocervical secretions of women with non-ulcerative sexually transmitted diseases: a mechanism for enhanced HIV-1 transmission? AIDS. 1999 Feb 25;13(3):327–332. doi: 10.1097/00002030-199902250-00004. [DOI] [PubMed] [Google Scholar]
  5. Edwards J. N., Morris H. B. Langerhans' cells and lymphocyte subsets in the female genital tract. Br J Obstet Gynaecol. 1985 Sep;92(9):974–982. doi: 10.1111/j.1471-0528.1985.tb03080.x. [DOI] [PubMed] [Google Scholar]
  6. Edwards J. N., Morris H. B. Langerhans' cells and lymphocyte subsets in the female genital tract. Br J Obstet Gynaecol. 1985 Sep;92(9):974–982. doi: 10.1111/j.1471-0528.1985.tb03080.x. [DOI] [PubMed] [Google Scholar]
  7. Gallichan W. S., Rosenthal K. L. Long-term immunity and protection against herpes simplex virus type 2 in the murine female genital tract after mucosal but not systemic immunization. J Infect Dis. 1998 May;177(5):1155–1161. doi: 10.1086/515286. [DOI] [PubMed] [Google Scholar]
  8. Giglio T., Imro M. A., Filaci G., Scudeletti M., Puppo F., De Cecco L., Indiveri F., Costantini S. Immune cell circulating subsets are affected by gonadal function. Life Sci. 1994;54(18):1305–1312. doi: 10.1016/0024-3205(94)00508-7. [DOI] [PubMed] [Google Scholar]
  9. Givan A. L., White H. D., Stern J. E., Colby E., Gosselin E. J., Guyre P. M., Wira C. R. Flow cytometric analysis of leukocytes in the human female reproductive tract: comparison of fallopian tube, uterus, cervix, and vagina. Am J Reprod Immunol. 1997 Nov;38(5):350–359. doi: 10.1111/j.1600-0897.1997.tb00311.x. [DOI] [PubMed] [Google Scholar]
  10. Hill J. A., Anderson D. J. Human vaginal leukocytes and the effects of vaginal fluid on lymphocyte and macrophage defense functions. Am J Obstet Gynecol. 1992 Feb;166(2):720–726. doi: 10.1016/0002-9378(92)91703-d. [DOI] [PubMed] [Google Scholar]
  11. Hulka J. F., Omran K. F. The uterine cervix as a potential local antibody secretor. Am J Obstet Gynecol. 1969 Jun 1;104(3):440–442. doi: 10.1016/s0002-9378(16)34202-8. [DOI] [PubMed] [Google Scholar]
  12. Kiviat N. B., Paavonen J. A., Wølner-Hanssen P., Critchlow C. W., Stamm W. E., Douglas J., Eschenbach D. A., Corey L. A., Holmes K. K. Histopathology of endocervical infection caused by Chlamydia trachomatis, herpes simplex virus, Trichomonas vaginalis, and Neisseria gonorrhoeae. Hum Pathol. 1990 Aug;21(8):831–837. doi: 10.1016/0046-8177(90)90052-7. [DOI] [PubMed] [Google Scholar]
  13. Kutteh W. H., Hatch K. D., Blackwell R. E., Mestecky J. Secretory immune system of the female reproductive tract: I. Immunoglobulin and secretory component-containing cells. Obstet Gynecol. 1988 Jan;71(1):56–60. [PubMed] [Google Scholar]
  14. Levine W. C., Pope V., Bhoomkar A., Tambe P., Lewis J. S., Zaidi A. A., Farshy C. E., Mitchell S., Talkington D. F. Increase in endocervical CD4 lymphocytes among women with nonulcerative sexually transmitted diseases. J Infect Dis. 1998 Jan;177(1):167–174. doi: 10.1086/513820. [DOI] [PubMed] [Google Scholar]
  15. McKenzie J., King A., Hare J., Fulford T., Wilson B., Stanley M. Immunocytochemical characterization of large granular lymphocytes in normal cervix and HPV associated disease. J Pathol. 1991 Sep;165(1):75–80. doi: 10.1002/path.1711650112. [DOI] [PubMed] [Google Scholar]
  16. Nathan C. F. Secretory products of macrophages. J Clin Invest. 1987 Feb;79(2):319–326. doi: 10.1172/JCI112815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ogra P. L., Yamanaka T., Losonsky G. A. Local immunologic defenses in the genital tract. Prog Clin Biol Res. 1981;70:381–394. [PubMed] [Google Scholar]
  18. Olaitan A., Johnson M. A., MacLean A., Poulter L. W. The distribution of immunocompetent cells in the genital tract of HIV-positive women. AIDS. 1996 Jun;10(7):759–764. doi: 10.1097/00002030-199606001-00010. [DOI] [PubMed] [Google Scholar]
  19. Parr M. B., Parr E. L. Antigen recognition in the female reproductive tract: I. Uptake of intraluminal protein tracers in the mouse vagina. J Reprod Immunol. 1990 Apr;17(2):101–114. doi: 10.1016/0165-0378(90)90029-6. [DOI] [PubMed] [Google Scholar]
  20. Schumacher G. F. Immunology of spermatozoa and cervical mucus. Hum Reprod. 1988 Apr;3(3):289–300. doi: 10.1093/oxfordjournals.humrep.a136698. [DOI] [PubMed] [Google Scholar]
  21. Slifka M. K., Rodriguez F., Whitton J. L. Rapid on/off cycling of cytokine production by virus-specific CD8+ T cells. Nature. 1999 Sep 2;401(6748):76–79. doi: 10.1038/43454. [DOI] [PubMed] [Google Scholar]
  22. Werb Z., Gordon S. Secretion of a specific collagenase by stimulated macrophages. J Exp Med. 1975 Aug 1;142(2):346–360. doi: 10.1084/jem.142.2.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. White H. D., Crassi K. M., Givan A. L., Stern J. E., Gonzalez J. L., Memoli V. A., Green W. R., Wira C. R. CD3+ CD8+ CTL activity within the human female reproductive tract: influence of stage of the menstrual cycle and menopause. J Immunol. 1997 Mar 15;158(6):3017–3027. [PubMed] [Google Scholar]

Articles from Sexually Transmitted Infections are provided here courtesy of BMJ Publishing Group

RESOURCES