Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Nov;64(11):4714–4718. doi: 10.1128/iai.64.11.4714-4718.1996

Gamma interferon protects endothelial cells from damage by Candida albicans by inhibiting endothelial cell phagocytosis.

R A Fratti 1, M A Ghannoum 1, J E Edwards Jr 1, S G Filler 1
PMCID: PMC174436  PMID: 8890230

Abstract

Once Candida albicans comes in contact with endothelial cells, it induces cellular injury. This endothelial cell injury may be a mechanism by which blood-borne organisms escape from the intravascular compartment and invade the tissue parenchyma during hematogenous infection. We have been investigating the ability of cytokines to modulate endothelial cell injury caused by C. albicans. Previously we reported that pretreatment of endothelial cells with gamma interferon (IFN-gamma) protects these cells from candidal injury in vitro. In the current study, we examined potential mechanisms of the cytoprotective effects of IFN-gamma. Time course experiments demonstrated that maximal reduction in candidal injury of endothelial cells occurred after the endothelial cells had been exposed to IFN-gamma for at least 72 h. In other studies, we determined that IFN-gamma reduced endothelial cell phagocytosis of C. albicans by 41.3% compared with that of untreated endothelial cells (P < 0.01). Since endothelial cell phagocytosis of C. albicans is required for damage to occur, inhibition of phagocytosis is likely a mechanism by which IFN-gamma protects endothelial cells from candidal injury. We also found that the cytoprotective effect of IFN-gamma is not mediated by reducing access of the organisms to intracellular endothelial cell iron or by upregulating the synthesis of reactive oxygen intermediates (which could potentially reduce the ability of C. albicans to injure endothelial cells). Thus, inhibiting endothelial cell phagocytosis of C. albicans may be a mechanism by which IFN-gamma augments the host defense against hematogenously disseminated candidal infections.

Full Text

The Full Text of this article is available as a PDF (199.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreoli S. P., McAteer J. A. Reactive oxygen molecule-mediated injury in endothelial and renal tubular epithelial cells in vitro. Kidney Int. 1990 Nov;38(5):785–794. doi: 10.1038/ki.1990.272. [DOI] [PubMed] [Google Scholar]
  2. Balla G., Vercellotti G., Eaton J. W., Jacob H. S. Heme uptake by endothelium synergizes polymorphonuclear granulocyte-mediated damage. Trans Assoc Am Physicians. 1990;103:174–179. [PubMed] [Google Scholar]
  3. Blasi E., Farinelli S., Varesio L., Bistoni F. Augmentation of GG2EE macrophage cell line-mediated anti-Candida activity by gamma interferon, tumor necrosis factor, and interleukin-1. Infect Immun. 1990 Apr;58(4):1073–1077. doi: 10.1128/iai.58.4.1073-1077.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brummer E., Morrison C. J., Stevens D. A. Recombinant and natural gamma-interferon activation of macrophages in vitro: different dose requirements for induction of killing activity against phagocytizable and nonphagocytizable fungi. Infect Immun. 1985 Sep;49(3):724–730. doi: 10.1128/iai.49.3.724-730.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buettner G. R. The spin trapping of superoxide and hydroxyl free radicals with DMPO (5,5-dimethylpyrroline-N-oxide): more about iron. Free Radic Res Commun. 1993;19 (Suppl 1):S79–S87. doi: 10.3109/10715769309056s79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Byrd T. F., Horwitz M. A. Interferon gamma-activated human monocytes downregulate transferrin receptors and inhibit the intracellular multiplication of Legionella pneumophila by limiting the availability of iron. J Clin Invest. 1989 May;83(5):1457–1465. doi: 10.1172/JCI114038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Byrne G. I., Lehmann L. K., Landry G. J. Induction of tryptophan catabolism is the mechanism for gamma-interferon-mediated inhibition of intracellular Chlamydia psittaci replication in T24 cells. Infect Immun. 1986 Aug;53(2):347–351. doi: 10.1128/iai.53.2.347-351.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Degré M., Sonnenfeld G., Rollag H., Mørland B. Effect of gamma interferon preparations on in vitro phagocytosis and degradation of Escherichia coli by mouse peritoneal macrophages. J Interferon Res. 1981;1(4):505–512. doi: 10.1089/jir.1981.1.505. [DOI] [PubMed] [Google Scholar]
  9. Diamond R. D., Lyman C. A., Wysong D. R. Disparate effects of interferon-gamma and tumor necrosis factor-alpha on early neutrophil respiratory burst and fungicidal responses to Candida albicans hyphae in vitro. J Clin Invest. 1991 Feb;87(2):711–720. doi: 10.1172/JCI115050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dupont G. P., Huecksteadt T. P., Marshall B. C., Ryan U. S., Michael J. R., Hoidal J. R. Regulation of xanthine dehydrogenase and xanthine oxidase activity and gene expression in cultured rat pulmonary endothelial cells. J Clin Invest. 1992 Jan;89(1):197–202. doi: 10.1172/JCI115563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Edwards J. E., Jr, Rotrosen D., Fontaine J. W., Haudenschild C. C., Diamond R. D. Neutrophil-mediated protection of cultured human vascular endothelial cells from damage by growing Candida albicans hyphae. Blood. 1987 May;69(5):1450–1457. [PubMed] [Google Scholar]
  12. Filler S. G., Ibe B. O., Luckett P. M., Raj J. U., Edwards J. E., Jr Candida albicans stimulates endothelial cell eicosanoid production. J Infect Dis. 1991 Nov;164(5):928–935. doi: 10.1093/infdis/164.5.928. [DOI] [PubMed] [Google Scholar]
  13. Filler S. G., Swerdloff J. N., Hobbs C., Luckett P. M. Penetration and damage of endothelial cells by Candida albicans. Infect Immun. 1995 Mar;63(3):976–983. doi: 10.1128/iai.63.3.976-983.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gebran S. J., Yamamoto Y., Newton C., Klein T. W., Friedman H. Inhibition of Legionella pneumophila growth by gamma interferon in permissive A/J mouse macrophages: role of reactive oxygen species, nitric oxide, tryptophan, and iron(III). Infect Immun. 1994 Aug;62(8):3197–3205. doi: 10.1128/iai.62.8.3197-3205.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Glancey G., Cameron J. S., Ogg C., Poston S. Adherence of Staphylococcus aureus to cultures of human peritoneal mesothelial cells. Nephrol Dial Transplant. 1993;8(2):157–162. [PubMed] [Google Scholar]
  16. Gregory S. H., Wing E. J. IFN-gamma inhibits the replication of Listeria monocytogenes in hepatocytes. J Immunol. 1993 Aug 1;151(3):1401–1409. [PubMed] [Google Scholar]
  17. Görög P., Pearson J. D., Kakkar V. V. Generation of reactive oxygen metabolites by phagocytosing endothelial cells. Atherosclerosis. 1988 Jul;72(1):19–27. doi: 10.1016/0021-9150(88)90058-5. [DOI] [PubMed] [Google Scholar]
  18. Hiraishi H., Terano A., Razandi M., Pedram A., Sugimoto T., Harada T., Ivey K. J. Reactive oxygen metabolite-induced toxicity to cultured bovine endothelial cells: status of cellular iron in mediating injury. J Cell Physiol. 1994 Jul;160(1):132–134. doi: 10.1002/jcp.1041600116. [DOI] [PubMed] [Google Scholar]
  19. Ibrahim A. S., Filler S. G., Ghannoum M. A., Edwards J. E., Jr Interferon-gamma protects endothelial cells from damage by Candida albicans. J Infect Dis. 1993 Jun;167(6):1467–1470. doi: 10.1093/infdis/167.6.1467. [DOI] [PubMed] [Google Scholar]
  20. Jaffe E. A., Nachman R. L., Becker C. G., Minick C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973 Nov;52(11):2745–2756. doi: 10.1172/JCI107470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kullberg B. J., van 't Wout J. W. Cytokines in the treatment of fungal infections. Biotherapy. 1994;7(3-4):195–210. doi: 10.1007/BF01878486. [DOI] [PubMed] [Google Scholar]
  22. Kvietys P. R., Inauen W., Bacon B. R., Grisham M. B. Xanthine oxidase-induced injury to endothelium: role of intracellular iron and hydroxyl radical. Am J Physiol. 1989 Nov;257(5 Pt 2):H1640–H1646. doi: 10.1152/ajpheart.1989.257.5.H1640. [DOI] [PubMed] [Google Scholar]
  23. Lane T. E., Wu-Hsieh B. A., Howard D. H. Iron limitation and the gamma interferon-mediated antihistoplasma state of murine macrophages. Infect Immun. 1991 Jul;59(7):2274–2278. doi: 10.1128/iai.59.7.2274-2278.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Levitz S. M., DiBenedetto D. J., Diamond R. D. A rapid fluorescent assay to distinguish attached from phagocytized yeast particles. J Immunol Methods. 1987 Jul 16;101(1):37–42. doi: 10.1016/0022-1759(87)90213-4. [DOI] [PubMed] [Google Scholar]
  25. MacNaul K. L., Hutchinson N. I. Differential expression of iNOS and cNOS mRNA in human vascular smooth muscle cells and endothelial cells under normal and inflammatory conditions. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1330–1334. doi: 10.1006/bbrc.1993.2398. [DOI] [PubMed] [Google Scholar]
  26. Maródi L., Johnston R. B., Jr Enhancement of macrophage candidacidal activity by interferon-gamma. Immunodeficiency. 1993;4(1-4):181–185. [PubMed] [Google Scholar]
  27. Oswald I. P., Eltoum I., Wynn T. A., Schwartz B., Caspar P., Paulin D., Sher A., James S. L. Endothelial cells are activated by cytokine treatment to kill an intravascular parasite, Schistosoma mansoni, through the production of nitric oxide. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):999–1003. doi: 10.1073/pnas.91.3.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pakala R., Pakala R., Benedict C. R. Novel 21-aminosteroidlike compounds prevent iron-induced free radical-mediated injury to vascular endothelial cells. J Cardiovasc Pharmacol. 1995 Jun;25(6):871–879. doi: 10.1097/00005344-199506000-00004. [DOI] [PubMed] [Google Scholar]
  29. Pfefferkorn E. R. Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc Natl Acad Sci U S A. 1984 Feb;81(3):908–912. doi: 10.1073/pnas.81.3.908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pober J. S., Cotran R. S. Cytokines and endothelial cell biology. Physiol Rev. 1990 Apr;70(2):427–451. doi: 10.1152/physrev.1990.70.2.427. [DOI] [PubMed] [Google Scholar]
  31. Rementería A., García-Tobalina R., Sevilla M. J. Nitric oxide-dependent killing of Candida albicans by murine peritoneal cells during an experimental infection. FEMS Immunol Med Microbiol. 1995 Jun;11(3):157–162. doi: 10.1111/j.1574-695X.1995.tb00112.x. [DOI] [PubMed] [Google Scholar]
  32. Renkonen R. Regulation of intercellular adhesion molecule-1 expression on endothelial cells with correlation to lymphocyte-endothelial binding. Scand J Immunol. 1989 Jun;29(6):717–721. doi: 10.1111/j.1365-3083.1989.tb01176.x. [DOI] [PubMed] [Google Scholar]
  33. Roilides E., Pizzo P. A. Modulation of host defenses by cytokines: evolving adjuncts in prevention and treatment of serious infections in immunocompromised hosts. Clin Infect Dis. 1992 Sep;15(3):508–524. doi: 10.1093/clind/15.3.508. [DOI] [PubMed] [Google Scholar]
  34. Rollag H., Degré M., Sonnenfeld G. Effects of interferon-alpha/beta and interferon-gamma preparations on phagocytosis by mouse peritoneal macrophages. Scand J Immunol. 1984 Aug;20(2):149–155. doi: 10.1111/j.1365-3083.1984.tb00988.x. [DOI] [PubMed] [Google Scholar]
  35. Rotrosen D., Edwards J. E., Jr, Gibson T. R., Moore J. C., Cohen A. H., Green I. Adherence of Candida to cultured vascular endothelial cells: mechanisms of attachment and endothelial cell penetration. J Infect Dis. 1985 Dec;152(6):1264–1274. doi: 10.1093/infdis/152.6.1264. [DOI] [PubMed] [Google Scholar]
  36. Schlesinger L. S., Horwitz M. A. Phagocytosis of Mycobacterium leprae by human monocyte-derived macrophages is mediated by complement receptors CR1 (CD35), CR3 (CD11b/CD18), and CR4 (CD11c/CD18) and IFN-gamma activation inhibits complement receptor function and phagocytosis of this bacterium. J Immunol. 1991 Sep 15;147(6):1983–1994. [PubMed] [Google Scholar]
  37. Schoedon G., Schneemann M., Walter R., Blau N., Hofer S., Schaffner A. Nitric oxide and infection: another view. Clin Infect Dis. 1995 Oct;21 (Suppl 2):S152–S157. doi: 10.1093/clinids/21.supplement_2.s152. [DOI] [PubMed] [Google Scholar]
  38. Stolpen A. H., Guinan E. C., Fiers W., Pober J. S. Recombinant tumor necrosis factor and immune interferon act singly and in combination to reorganize human vascular endothelial cell monolayers. Am J Pathol. 1986 Apr;123(1):16–24. [PMC free article] [PubMed] [Google Scholar]
  39. Vazquez-Torres A., Jones-Carson J., Balish E. Nitric oxide production does not directly increase macrophage candidacidal activity. Infect Immun. 1995 Mar;63(3):1142–1144. doi: 10.1128/iai.63.3.1142-1144.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Werner-Felmayer G., Werner E. R., Fuchs D., Hausen A., Reibnegger G., Schmidt K., Weiss G., Wachter H. Pteridine biosynthesis in human endothelial cells. Impact on nitric oxide-mediated formation of cyclic GMP. J Biol Chem. 1993 Jan 25;268(3):1842–1846. [PubMed] [Google Scholar]
  41. Woodman J. P., Dimier I. H., Bout D. T. Human endothelial cells are activated by IFN-gamma to inhibit Toxoplasma gondii replication. Inhibition is due to a different mechanism from that existing in mouse macrophages and human fibroblasts. J Immunol. 1991 Sep 15;147(6):2019–2023. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES