Abstract
The direct binding of platelets by bacteria is a postulated central mechanism in the pathogenesis of endocarditis. To address the role of binding more definitively, we employed Tn551 insertional mutagenesis of Staphylococcus aureus parental strain ISP479 to generate an isogenic variant (strain PS12) that bound platelets minimally. As compared with the binding of ISP479, the binding of PS12 to platelet monolayers was reduced by 67.2%. Similarly, the binding of PS12 to platelets in suspension was reduced by 71.3%, as measured by flow cytometry. The low-binding phenotype was transducible into both ISP479 and S. aureus Newman. Southern blotting indicated that a single copy of Tn551 was inserted within the chromosomes of PS12 and the transductants. When tested in a rabbit model, animals inoculated with PS12 were significantly less likely to develop endocarditis and had lower densities of organisms (CFU per gram) within vegetations and a decreased incidence of renal abscess formation, as compared with animals inoculated with the parental strain. The diminished virulence of PS12 was not attributable to a reduction in the initial attachment of organisms to the damaged endocardium, since 30 min after inoculation, PS12-infected animals had microbial densities on the valve surface comparable to those seen with the parental strain. These results indicate that the direct binding of Staphylococcus aureus to platelets is a major determinant of virulence in the pathogenesis of endocarditis. Staphylococcus-platelet binding appears to be critical for pathogenetic events occurring after the initial colonization of the valve surface, such as vegetation formation and septic embolization.
Full Text
The Full Text of this article is available as a PDF (229.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bayer A. S., Lam K. Efficacy of vancomycin plus rifampin in experimental aortic-valve endocarditis due to methicillin-resistant Staphylococcus aureus: in vitro-in vivo correlations. J Infect Dis. 1985 Jan;151(1):157–165. doi: 10.1093/infdis/151.1.157. [DOI] [PubMed] [Google Scholar]
- Bayer A. S., Sullam P. M., Ramos M., Li C., Cheung A. L., Yeaman M. R. Staphylococcus aureus induces platelet aggregation via a fibrinogen-dependent mechanism which is independent of principal platelet glycoprotein IIb/IIIa fibrinogen-binding domains. Infect Immun. 1995 Sep;63(9):3634–3641. doi: 10.1128/iai.63.9.3634-3641.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bayer M. G., Heinrichs J. H., Cheung A. L. The molecular architecture of the sar locus in Staphylococcus aureus. J Bacteriol. 1996 Aug;178(15):4563–4570. doi: 10.1128/jb.178.15.4563-4570.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Becker R. C., Tracy R. P., Bovill E. G., Mann K. G., Ault K. The clinical use of flow cytometry for assessing platelet activation in acute coronary syndromes. TIMI-III Thrombosis and Anticoagulation Group. Coron Artery Dis. 1994 Apr;5(4):339–345. doi: 10.1097/00019501-199404000-00010. [DOI] [PubMed] [Google Scholar]
- Berger-Bächi B. Insertional inactivation of staphylococcal methicillin resistance by Tn551. J Bacteriol. 1983 Apr;154(1):479–487. doi: 10.1128/jb.154.1.479-487.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheung A. L., Eberhardt K. J., Chung E., Yeaman M. R., Sullam P. M., Ramos M., Bayer A. S. Diminished virulence of a sar-/agr- mutant of Staphylococcus aureus in the rabbit model of endocarditis. J Clin Invest. 1994 Nov;94(5):1815–1822. doi: 10.1172/JCI117530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheung A. L., Koomey J. M., Butler C. A., Projan S. J., Fischetti V. A. Regulation of exoprotein expression in Staphylococcus aureus by a locus (sar) distinct from agr. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6462–6466. doi: 10.1073/pnas.89.14.6462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheung A. L., Yeaman M. R., Sullam P. M., Witt M. D., Bayer A. S. Role of the sar locus of Staphylococcus aureus in induction of endocarditis in rabbits. Infect Immun. 1994 May;62(5):1719–1725. doi: 10.1128/iai.62.5.1719-1725.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dankert J., van der Werff J., Zaat S. A., Joldersma W., Klein D., Hess J. Involvement of bactericidal factors from thrombin-stimulated platelets in clearance of adherent viridans streptococci in experimental infective endocarditis. Infect Immun. 1995 Feb;63(2):663–671. doi: 10.1128/iai.63.2.663-671.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Durack D. T., Beeson P. B. Experimental bacterial endocarditis. I. Colonization of a sterile vegetation. Br J Exp Pathol. 1972 Feb;53(1):44–49. [PMC free article] [PubMed] [Google Scholar]
- Durack D. T. Experimental bacterial endocarditis. IV. Structure and evolution of very early lesions. J Pathol. 1975 Feb;115(2):81–89. doi: 10.1002/path.1711150204. [DOI] [PubMed] [Google Scholar]
- Gong K., Wen D. Y., Ouyang T., Rao A. T., Herzberg M. C. Platelet receptors for the Streptococcus sanguis adhesin and aggregation-associated antigens are distinguished by anti-idiotypical monoclonal antibodies. Infect Immun. 1995 Sep;63(9):3628–3633. doi: 10.1128/iai.63.9.3628-3633.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heinrichs J. H., Bayer M. G., Cheung A. L. Characterization of the sar locus and its interaction with agr in Staphylococcus aureus. J Bacteriol. 1996 Jan;178(2):418–423. doi: 10.1128/jb.178.2.418-423.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herrmann M., Lai Q. J., Albrecht R. M., Mosher D. F., Proctor R. A. Adhesion of Staphylococcus aureus to surface-bound platelets: role of fibrinogen/fibrin and platelet integrins. J Infect Dis. 1993 Feb;167(2):312–322. doi: 10.1093/infdis/167.2.312. [DOI] [PubMed] [Google Scholar]
- Johnson C. M., Bahn R. C., Fass D. N. Experimental porcine infective endocarditis: description of a clinical model. Vet Pathol. 1986 Nov;23(6):780–782. doi: 10.1177/030098588602300620. [DOI] [PubMed] [Google Scholar]
- Kuypers J. M., Proctor R. A. Reduced adherence to traumatized rat heart valves by a low-fibronectin-binding mutant of Staphylococcus aureus. Infect Immun. 1989 Aug;57(8):2306–2312. doi: 10.1128/iai.57.8.2306-2312.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicolau D. P., Freeman C. D., Nightingale C. H., Quintiliani R., Coe C. J., Maderazo E. G., Cooper B. W. Reduction of bacterial titers by low-dose aspirin in experimental aortic valve endocarditis. Infect Immun. 1993 Apr;61(4):1593–1595. doi: 10.1128/iai.61.4.1593-1595.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Novick R. P., Edelman I., Schwesinger M. D., Gruss A. D., Swanson E. C., Pattee P. A. Genetic translocation in Staphylococcus aureus. Proc Natl Acad Sci U S A. 1979 Jan;76(1):400–404. doi: 10.1073/pnas.76.1.400. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Novick R. P. Genetic systems in staphylococci. Methods Enzymol. 1991;204:587–636. doi: 10.1016/0076-6879(91)04029-n. [DOI] [PubMed] [Google Scholar]
- Sullam P. M., Frank U., Yeaman M. R., Täuber M. G., Bayer A. S., Chambers H. F. Effect of thrombocytopenia on the early course of streptococcal endocarditis. J Infect Dis. 1993 Oct;168(4):910–914. doi: 10.1093/infdis/168.4.910. [DOI] [PubMed] [Google Scholar]
- Sullam P. M., Payan D. G., Dazin P. F., Valone F. H. Binding of viridans group streptococci to human platelets: a quantitative analysis. Infect Immun. 1990 Nov;58(11):3802–3806. doi: 10.1128/iai.58.11.3802-3806.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sullam P. M., Valone F. H., Mills J. Mechanisms of platelet aggregation by viridans group streptococci. Infect Immun. 1987 Aug;55(8):1743–1750. doi: 10.1128/iai.55.8.1743-1750.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu T., Yeaman M. R., Bayer A. S. In vitro resistance to platelet microbicidal protein correlates with endocarditis source among bacteremic staphylococcal and streptococcal isolates. Antimicrob Agents Chemother. 1994 Apr;38(4):729–732. doi: 10.1128/aac.38.4.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yeaman M. R., Puentes S. M., Norman D. C., Bayer A. S. Partial characterization and staphylocidal activity of thrombin-induced platelet microbicidal protein. Infect Immun. 1992 Mar;60(3):1202–1209. doi: 10.1128/iai.60.3.1202-1209.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yeaman M. R., Sullam P. M., Dazin P. F., Ghannoum M. A., Edwards J. E., Jr, Bayer A. S. Fluconazole and platelet microbicidal protein inhibit Candida adherence to platelets in vitro. Antimicrob Agents Chemother. 1994 Jul;38(7):1460–1465. doi: 10.1128/aac.38.7.1460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yeaman M. R., Sullam P. M., Dazin P. F., Norman D. C., Bayer A. S. Characterization of Staphylococcus aureus-platelet binding by quantitative flow cytometric analysis. J Infect Dis. 1992 Jul;166(1):65–73. doi: 10.1093/infdis/166.1.65. [DOI] [PubMed] [Google Scholar]