Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Dec;64(12):4967–4975. doi: 10.1128/iai.64.12.4967-4975.1996

Cloning and expression of the complement fixation antigen-chitinase of Coccidioides immitis.

C R Zimmermann 1, S M Johnson 1, G W Martens 1, A G White 1, D Pappagianis 1
PMCID: PMC174476  PMID: 8945534

Abstract

A chitinase had been isolated from the culture filtrates of Coccidioides immitis endosporulating spherules and from hyphae and shown to be the coccidioidal complement fixation (CF) and immunodiffusion-CF antigen. In the present study, we made use of our previously determined amino-terminal (N-terminal) sequence of the CF-chitinase to design degenerate oligonucleotide primers and to amplify and sequence a PCR product that coded for the N-terminal portion of the CF-chitinase. The PCR product was used as a hybridization probe to screen a developing spherule-(lambda)ZAP cDNA library, and three hybridizing clones were selected. These clones were converted into their pBluescript expression plasmid form in Escherichia coli and induced to express their recombinant proteins. Lysate from only one clone, pCTS 4-2A, yielded an enzymatically functional CF-chitinase and a line of identity with control immunodiffusion-CF-positive antigen. The pCTS 4-2A insert was sequenced and found to contain a deduced open reading frame coding for a 427-amino-acid polypeptide with an approximate molecular weight of 47 kDa. When purified by a chitin adsorption-desorption method, the recombinant protein exhibited virtually identical characteristics to those of the original C. immitis CF-chitinase. Nondenaturing gels of the pCTS 4-2A E. coli lysates and the purified C. immitis and recombinant CF-chitinase revealed proteins that had chitinase activity and similar relative electrophoretic mobilities. The appearance and relative levels of hybridizing RNA from the developing spherules-endospores (SEs) and hyphae correlated with the appearance or presence and level of CF-chitinase enzyme activity found in SEs culture filtrate and in cellular extracts of developing SE and hyphae. Thus, a functional recombinant CF-chitinase antigen was produced in E. coli and was used in serological diagnostic applications. These results also suggest a functional role for this chitinase in SE development and maturation.

Full Text

The Full Text of this article is available as a PDF (477.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benton W. D., Davis R. W. Screening lambdagt recombinant clones by hybridization to single plaques in situ. Science. 1977 Apr 8;196(4286):180–182. doi: 10.1126/science.322279. [DOI] [PubMed] [Google Scholar]
  2. Blaiseau P. L., Lafay J. F. Primary structure of a chitinase-encoding gene (chi1) from the filamentous fungus Aphanocladium album: similarity to bacterial chitinases. Gene. 1992 Oct 21;120(2):243–248. doi: 10.1016/0378-1119(92)90099-b. [DOI] [PubMed] [Google Scholar]
  3. Breathnach R., Benoist C., O'Hare K., Gannon F., Chambon P. Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4853–4857. doi: 10.1073/pnas.75.10.4853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dugger K. O., Villareal K. M., Ngyuen A., Zimmermann C. R., Law J. H., Galgiani J. N. Cloning and sequence analysis of the cDNA for a protein from Coccidioides immitis with immunogenic potential. Biochem Biophys Res Commun. 1996 Jan 17;218(2):485–489. doi: 10.1006/bbrc.1996.0086. [DOI] [PubMed] [Google Scholar]
  5. Harpster M. H., Dunsmuir P. Nucleotide sequence of the chitinase B gene of Serratia marcescens QMB1466. Nucleic Acids Res. 1989 Jul 11;17(13):5395–5395. doi: 10.1093/nar/17.13.5395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hube B., Monod M., Schofield D. A., Brown A. J., Gow N. A. Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol. 1994 Oct;14(1):87–99. doi: 10.1111/j.1365-2958.1994.tb01269.x. [DOI] [PubMed] [Google Scholar]
  7. Johnson S. M., Pappagianis D. The coccidioidal complement fixation and immunodiffusion-complement fixation antigen is a chitinase. Infect Immun. 1992 Jul;60(7):2588–2592. doi: 10.1128/iai.60.7.2588-2592.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Johnson S. M., Zimmermann C. R., Pappagianis D. Amino-terminal sequence analysis of the Coccidioides immitis chitinase/immunodiffusion-complement fixation protein. Infect Immun. 1993 Jul;61(7):3090–3092. doi: 10.1128/iai.61.7.3090-3092.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jones J. D., Grady K. L., Suslow T. V., Bedbrook J. R. Isolation and characterization of genes encoding two chitinase enzymes from Serratia marcescens. EMBO J. 1986 Mar;5(3):467–473. doi: 10.1002/j.1460-2075.1986.tb04235.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. LaVallie E. R., DiBlasio E. A., Kovacic S., Grant K. L., Schendel P. F., McCoy J. M. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology (N Y) 1993 Feb;11(2):187–193. doi: 10.1038/nbt0293-187. [DOI] [PubMed] [Google Scholar]
  13. Maeda H., Ishida N. Specificity of binding of hexopyranosyl polysaccharides with fluorescent brightener. J Biochem. 1967 Aug;62(2):276–278. doi: 10.1093/oxfordjournals.jbchem.a128660. [DOI] [PubMed] [Google Scholar]
  14. Marshall R. D. Glycoproteins. Annu Rev Biochem. 1972;41:673–702. doi: 10.1146/annurev.bi.41.070172.003325. [DOI] [PubMed] [Google Scholar]
  15. Pappagianis D., Zimmer B. L. Serology of coccidioidomycosis. Clin Microbiol Rev. 1990 Jul;3(3):247–268. doi: 10.1128/cmr.3.3.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pishko E. J., Kirkland T. N., Cole G. T. Isolation and characterization of two chitinase-encoding genes (cts1, cts2) from the fungus Coccidioides immitis. Gene. 1995 Dec 29;167(1-2):173–177. doi: 10.1016/0378-1119(95)00654-0. [DOI] [PubMed] [Google Scholar]
  17. Resnick S., Zimmer B., Pappagianis D., Eakin A., McKerrow J. Purification and amino-terminal sequence analysis of the complement-fixing and precipitin antigens from Coccidioides immitis. J Clin Microbiol. 1990 Feb;28(2):385–388. doi: 10.1128/jcm.28.2.385-388.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
  19. Watanabe T., Suzuki K., Oyanagi W., Ohnishi K., Tanaka H. Gene cloning of chitinase A1 from Bacillus circulans WL-12 revealed its evolutionary relationship to Serratia chitinase and to the type III homology units of fibronectin. J Biol Chem. 1990 Sep 15;265(26):15659–15665. [PubMed] [Google Scholar]
  20. Yang C., Zhu Y., Magee D. M., Cox R. A. Molecular cloning and characterization of the Coccidioides immitis complement fixation/chitinase antigen. Infect Immun. 1996 Jun;64(6):1992–1997. doi: 10.1128/iai.64.6.1992-1997.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Zimmer B. L., Pappagianis D. Characterization of a soluble protein of Coccidiodes immitis with activity as an immunodiffusion-complement fixation antigen. J Clin Microbiol. 1988 Nov;26(11):2250–2256. doi: 10.1128/jcm.26.11.2250-2256.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zimmermann C. R., Snedker C. J., Pappagianis D. Characterization of Coccidioides immitis isolates by restriction fragment length polymorphisms. J Clin Microbiol. 1994 Dec;32(12):3040–3042. doi: 10.1128/jcm.32.12.3040-3042.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES