Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Dec;64(12):5000–5007. doi: 10.1128/iai.64.12.5000-5007.1996

Candidacidal activity of recombinant human salivary histatin-5 and variants.

H Tsai 1, P A Raj 1, L A Bobek 1
PMCID: PMC174480  PMID: 8945538

Abstract

Human salivary histatins possess fungicidal and bactericidal activities. The current investigation evaluates the structure-function relationship of histatins with regard to their candidacidal activity by using recombinant histatin-5 and its variants produced in Escherichia coli. The purified recombinant histatins were examined for their candidacidal activity and secondary structure. The m21 (with Lys-13 replaced by Thr [Lys-13-->Thr]) and m71 (Lys-13-->Glu) variants are significantly less effective than recombinant histatin-5 in killing Candida albicans, suggesting that Lys-13 is critical for candidacidal activity. The m68 (Lys-13-->Glu and Arg-22-->Gly) variant is significantly less potent than the recombinant histatin-5 as well as m71, indicating that Arg-22 is crucial for the cidal activity. The candidacidal activities of m1 (Arg-12-->Ile), m2 (Arg-12-->Ile and Lys-17-->Asp), m12 (Arg-12-->Lys and His-21-->Leu), and m70 (His-19-->Pro and His-21-->Arg) variants, however, are comparable to that of recombinant histatin-5, indicating that Arg-12, Lys-17, His-19, and His-21 are not functionally important. The conformational preferences of histatin-5 and variants were determined by circular dichroism. The results indicate that all proteins have a strong tendency to adopt alpha-helical conformation in trifluoroethanol. Previously, we have shown that the alpha-helical conformation is one of the important structural requirements for eliciting appreciable candidacidal activity. Collectively, the data suggest that in addition to the helical conformation, specific residues such as Lys-13 and Arg-22 in the sequence of histatin-5 are, indeed, important for candidacidal activity.

Full Text

The Full Text of this article is available as a PDF (297.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bechinger B., Zasloff M., Opella S. J. Structure and interactions of magainin antibiotic peptides in lipid bilayers: a solid-state nuclear magnetic resonance investigation. Biophys J. 1992 Apr;62(1):12–14. doi: 10.1016/S0006-3495(92)81763-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bobek L. A., Ramasubbu N., Wang X., Weaver T. R., Levine M. J. Biological activities and secondary structures of variant forms of human salivary cystatin SN produced in Escherichia coli. Gene. 1994 Dec 30;151(1-2):303–308. doi: 10.1016/0378-1119(94)90675-0. [DOI] [PubMed] [Google Scholar]
  3. Bobek L. A., Tsai H., Levine M. J. Expression of human salivary histatin and cystatin/histatin chimeric cDNAs in Escherichia coli. Crit Rev Oral Biol Med. 1993;4(3-4):581–590. doi: 10.1177/10454411930040034501. [DOI] [PubMed] [Google Scholar]
  4. Bobek L. A., Wang X., Levine M. J. Efficient production of biologically active human salivary cystatins in Escherichia coli. Gene. 1993 Jan 30;123(2):203–210. doi: 10.1016/0378-1119(93)90125-m. [DOI] [PubMed] [Google Scholar]
  5. Cruciani R. A., Barker J. L., Durell S. R., Raghunathan G., Guy H. R., Zasloff M., Stanley E. F. Magainin 2, a natural antibiotic from frog skin, forms ion channels in lipid bilayer membranes. Eur J Pharmacol. 1992 Aug 3;226(4):287–296. doi: 10.1016/0922-4106(92)90045-w. [DOI] [PubMed] [Google Scholar]
  6. Driscoll J., Zuo Y., Xu T., Choi J. R., Troxler R. F., Oppenheim F. G. Functional comparison of native and recombinant human salivary histatin 1. J Dent Res. 1995 Dec;74(12):1837–1844. doi: 10.1177/00220345950740120601. [DOI] [PubMed] [Google Scholar]
  7. Greenfield N., Fasman G. D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry. 1969 Oct;8(10):4108–4116. doi: 10.1021/bi00838a031. [DOI] [PubMed] [Google Scholar]
  8. Hay D. I. Fractionation of human parotid salivary proteins and the isolation of an histidine-rich acidic peptide which shows high affinity for hydroxyapatite surfaces. Arch Oral Biol. 1975 Sep;20(9):553–558. doi: 10.1016/0003-9969(75)90073-4. [DOI] [PubMed] [Google Scholar]
  9. Jung G., Dubischar N. Conformational changes of alamethicin induced by solvent and temperature. A 13C-NMR and circular-dichroism study. Eur J Biochem. 1975 Jun;54(2):395–409. doi: 10.1111/j.1432-1033.1975.tb04150.x. [DOI] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Lal K., Santarpia R. P., 3rd, Xu L., Manssuri F., Pollock J. J. One-step purification of histidine-rich polypeptides form human parotid saliva and determination of anti-candidal activity. Oral Microbiol Immunol. 1992 Feb;7(1):44–50. doi: 10.1111/j.1399-302x.1992.tb00019.x. [DOI] [PubMed] [Google Scholar]
  12. MacKay B. J., Denepitiya L., Iacono V. J., Krost S. B., Pollock J. J. Growth-inhibitory and bactericidal effects of human parotid salivary histidine-rich polypeptides on Streptococcus mutans. Infect Immun. 1984 Jun;44(3):695–701. doi: 10.1128/iai.44.3.695-701.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Marion D., Zasloff M., Bax A. A two-dimensional NMR study of the antimicrobial peptide magainin 2. FEBS Lett. 1988 Jan 18;227(1):21–26. doi: 10.1016/0014-5793(88)81405-4. [DOI] [PubMed] [Google Scholar]
  14. Minaguchi K., Bennick A. Genetics of human salivary proteins. J Dent Res. 1989 Jan;68(1):2–15. doi: 10.1177/00220345890680010201. [DOI] [PubMed] [Google Scholar]
  15. Murakami Y., Nagata H., Amano A., Takagaki M., Shizukuishi S., Tsunemitsu A., Aimoto S. Inhibitory effects of human salivary histatins and lysozyme on coaggregation between Porphyromonas gingivalis and Streptococcus mitis. Infect Immun. 1991 Sep;59(9):3284–3286. doi: 10.1128/iai.59.9.3284-3286.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Murakami Y., Nagata H., Shizukuishi S., Nakashima K., Okawa T., Takigawa M., Tsunemitsu A. Histatin as a synergistic stimulator with epidermal growth factor of rabbit chondrocyte proliferation. Biochem Biophys Res Commun. 1994 Jan 14;198(1):274–280. doi: 10.1006/bbrc.1994.1038. [DOI] [PubMed] [Google Scholar]
  17. Murakami Y., Shizukuishi S., Tsunemitsu A., Nakashima K., Kato Y., Aimoto S. Binding of a histidine-rich peptide to Porphyromonas gingivalis. FEMS Microbiol Lett. 1991 Aug 15;66(3):253–256. doi: 10.1016/0378-1097(91)90269-g. [DOI] [PubMed] [Google Scholar]
  18. Murakami Y., Tamagawa H., Shizukuishi S., Tsunemitsu A., Aimoto S. Biological role of an arginine residue present in a histidine-rich peptide which inhibits hemagglutination of Porphyromonas gingivalis. FEMS Microbiol Lett. 1992 Nov 1;77(1-3):201–204. doi: 10.1016/0378-1097(92)90156-i. [DOI] [PubMed] [Google Scholar]
  19. Oekonomopulos R., Jung G. Circular dichroism and conformational analysis of the membrane-modifying peptide N-t-Boc-(Aib-L-Ala)5-Gly-Ala-Aib-Pro-Ala-Aib-Aib-Glu-(OBzI)-Gln-OMe with respect to alamethicin. Biopolymers. 1980 Jan;19(1):203–214. doi: 10.1002/bip.1980.360190114. [DOI] [PubMed] [Google Scholar]
  20. Oppenheim F. G., Xu T., McMillian F. M., Levitz S. M., Diamond R. D., Offner G. D., Troxler R. F. Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J Biol Chem. 1988 Jun 5;263(16):7472–7477. [PubMed] [Google Scholar]
  21. Oppenheim F. G., Yang Y. C., Diamond R. D., Hyslop D., Offner G. D., Troxler R. F. The primary structure and functional characterization of the neutral histidine-rich polypeptide from human parotid secretion. J Biol Chem. 1986 Jan 25;261(3):1177–1182. [PubMed] [Google Scholar]
  22. Pollock J. J., Denepitiya L., MacKay B. J., Iacono V. J. Fungistatic and fungicidal activity of human parotid salivary histidine-rich polypeptides on Candida albicans. Infect Immun. 1984 Jun;44(3):702–707. doi: 10.1128/iai.44.3.702-707.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Raj P. A., Edgerton M., Levine M. J. Salivary histatin 5: dependence of sequence, chain length, and helical conformation for candidacidal activity. J Biol Chem. 1990 Mar 5;265(7):3898–3905. [PubMed] [Google Scholar]
  24. Raj P. A., Soni S. D., Levine M. J. Membrane-induced helical conformation of an active candidacidal fragment of salivary histatins. J Biol Chem. 1994 Apr 1;269(13):9610–9619. [PubMed] [Google Scholar]
  25. Richardson C. F., Johnsson M., Raj P. A., Levine M. J., Nancollas G. H. The influence of histatin-5 fragments on the mineralization of hydroxyapatite. Arch Oral Biol. 1993 Nov;38(11):997–1002. doi: 10.1016/0003-9969(93)90113-z. [DOI] [PubMed] [Google Scholar]
  26. Rose G. D., Geselowitz A. R., Lesser G. J., Lee R. H., Zehfus M. H. Hydrophobicity of amino acid residues in globular proteins. Science. 1985 Aug 30;229(4716):834–838. doi: 10.1126/science.4023714. [DOI] [PubMed] [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Smith D. B., Johnson K. S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. doi: 10.1016/0378-1119(88)90005-4. [DOI] [PubMed] [Google Scholar]
  29. Sudha T. S., Vijayakumar E. K., Balaram P. Circular dichroism studies of helical oligopeptides. Can 3(10) and alpha-helical conformations be chiroptically distinguished? Int J Pept Protein Res. 1983 Oct;22(4):464–468. doi: 10.1111/j.1399-3011.1983.tb02116.x. [DOI] [PubMed] [Google Scholar]
  30. Sundstrom P. M., Nichols E. J., Kenny G. E. Antigenic differences between mannoproteins of germ tubes and blastospores of Candida albicans. Infect Immun. 1987 Mar;55(3):616–620. doi: 10.1128/iai.55.3.616-620.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Xu T., Levitz S. M., Diamond R. D., Oppenheim F. G. Anticandidal activity of major human salivary histatins. Infect Immun. 1991 Aug;59(8):2549–2554. doi: 10.1128/iai.59.8.2549-2554.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zuo Y., Xu T., Troxler R. F., Li J., Driscoll J., Oppenheim F. G. Recombinant histatins: functional domain duplication enhances candidacidal activity. Gene. 1995 Aug 8;161(1):87–91. doi: 10.1016/0378-1119(95)00237-z. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES