Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Dec;64(12):5029–5034. doi: 10.1128/iai.64.12.5029-5034.1996

Bacteroides fragilis toxin rapidly intoxicates human intestinal epithelial cells (HT29/C1) in vitro.

R F Saidi 1, C L Sears 1
PMCID: PMC174484  PMID: 8945542

Abstract

Enterotoxigenic Bacteroides fragilis strains associated with childhood diarrhea produce a 20-kDa protein toxin (BFT). Purified BFT causes striking morphologic changes in subconfluent human colonic epithelial cells (HT29/C1). In a 3-h HT29/C1 cell assay, the estimated half-maximal effective concentration of BFT was 12.5 pM, and morphologic effects were detectable as early as 30 min and nearly complete by 1.5 h. Concentrations as low as 0.5 pM could also cause intoxication, but morphologic changes were detectable only when the assay was extended to 18 h. The onset of this intoxication was concentration dependent and rapid, occurring within minutes (<7 min at 0.25 nM, <2 min at 2.5 nM). Notably, the onset of intoxication at 37 degrees C became irreversible to washing within 2 min after exposure to BFT. Morphologic changes were completely inhibited by treatment of HT29/C1 cells with BFT at 4 degrees C but could be demonstrated by subsequent warming to temperatures of 15 degrees C or higher after washing. The time required for the association of BFT with HT29/C1 cells at 4 degrees C was inversely correlated with concentration. Inhibitors of endosomal and Golgi trafficking (NH4Cl and brefeldin A) prevented the intoxication of HT29/C1 cells by Clostridium difficile toxin A and cholera toxin, respectively, but not by BFT. Agents altering microtubule structure did not affect the cellular activity of BFT. These data indicate that a purified toxin from B. fragilis strains associated with diarrhea rapidly and irreversibly intoxicates human intestinal epithelial cells (HT29/C1) in a concentration- and temperature-dependent manner and that the process of intoxication may not involve internalization mechanisms utilizing microtubules or sensitive to pH or brefeldin A.

Full Text

The Full Text of this article is available as a PDF (196.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achler C., Filmer D., Merte C., Drenckhahn D. Role of microtubules in polarized delivery of apical membrane proteins to the brush border of the intestinal epithelium. J Cell Biol. 1989 Jul;109(1):179–189. doi: 10.1083/jcb.109.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson R. G., Kamen B. A., Rothberg K. G., Lacey S. W. Potocytosis: sequestration and transport of small molecules by caveolae. Science. 1992 Jan 24;255(5043):410–411. doi: 10.1126/science.1310359. [DOI] [PubMed] [Google Scholar]
  3. Ding A. H., Porteu F., Sanchez E., Nathan C. F. Shared actions of endotoxin and taxol on TNF receptors and TNF release. Science. 1990 Apr 20;248(4953):370–372. doi: 10.1126/science.1970196. [DOI] [PubMed] [Google Scholar]
  4. Donelli G., Fabbri A., Fiorentini C. Bacteroides fragilis enterotoxin induces cytoskeletal changes and surface blebbing in HT-29 cells. Infect Immun. 1996 Jan;64(1):113–119. doi: 10.1128/iai.64.1.113-119.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Donta S. T., Beristain S., Tomicic T. K. Inhibition of heat-labile cholera and Escherichia coli enterotoxins by brefeldin A. Infect Immun. 1993 Aug;61(8):3282–3286. doi: 10.1128/iai.61.8.3282-3286.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dreyfus L. A., Harville B., Howard D. E., Shaban R., Beatty D. M., Morris S. J. Calcium influx mediated by the Escherichia coli heat-stable enterotoxin B (STB). Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3202–3206. doi: 10.1073/pnas.90.8.3202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eilers U., Klumperman J., Hauri H. P. Nocodazole, a microtubule-active drug, interferes with apical protein delivery in cultured intestinal epithelial cells (Caco-2). J Cell Biol. 1989 Jan;108(1):13–22. doi: 10.1083/jcb.108.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Florin I., Thelestam M. Internalization of Clostridium difficile cytotoxin into cultured human lung fibroblasts. Biochim Biophys Acta. 1983 Dec 19;763(4):383–392. doi: 10.1016/0167-4889(83)90100-3. [DOI] [PubMed] [Google Scholar]
  9. Gomes T. A., Rassi V., MacDonald K. L., Ramos S. R., Trabulsi L. R., Vieira M. A., Guth B. E., Candeias J. A., Ivey C., Toledo M. R. Enteropathogens associated with acute diarrheal disease in urban infants in São Paulo, Brazil. J Infect Dis. 1991 Aug;164(2):331–337. doi: 10.1093/infdis/164.2.331. [DOI] [PubMed] [Google Scholar]
  10. Gordon V. M., Leppla S. H., Hewlett E. L. Inhibitors of receptor-mediated endocytosis block the entry of Bacillus anthracis adenylate cyclase toxin but not that of Bordetella pertussis adenylate cyclase toxin. Infect Immun. 1988 May;56(5):1066–1069. doi: 10.1128/iai.56.5.1066-1069.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Guerrant R. L., Hughes J. M., Lima N. L., Crane J. Diarrhea in developed and developing countries: magnitude, special settings, and etiologies. Rev Infect Dis. 1990 Jan-Feb;12 (Suppl 1):S41–S50. doi: 10.1093/clinids/12.Supplement_1.S41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hanna P. C., McClane B. A. A recombinant C-terminal toxin fragment provides evidence that membrane insertion is important for Clostridium perfringens enterotoxin cytotoxicity. Mol Microbiol. 1991 Jan;5(1):225–230. doi: 10.1111/j.1365-2958.1991.tb01843.x. [DOI] [PubMed] [Google Scholar]
  13. Hecht G., Koutsouris A., Pothoulakis C., LaMont J. T., Madara J. L. Clostridium difficile toxin B disrupts the barrier function of T84 monolayers. Gastroenterology. 1992 Feb;102(2):416–423. doi: 10.1016/0016-5085(92)90085-d. [DOI] [PubMed] [Google Scholar]
  14. Hecht G., Pothoulakis C., LaMont J. T., Madara J. L. Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J Clin Invest. 1988 Nov;82(5):1516–1524. doi: 10.1172/JCI113760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Henriques B., Florin I., Thelestam M. Cellular internalisation of Clostridium difficile toxin A. Microb Pathog. 1987 Jun;2(6):455–463. doi: 10.1016/0882-4010(87)90052-0. [DOI] [PubMed] [Google Scholar]
  16. Huott P. A., Liu W., McRoberts J. A., Giannella R. A., Dharmsathaphorn K. Mechanism of action of Escherichia coli heat stable enterotoxin in a human colonic cell line. J Clin Invest. 1988 Aug;82(2):514–523. doi: 10.1172/JCI113626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Just I., Wilm M., Selzer J., Rex G., von Eichel-Streiber C., Mann M., Aktories K. The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. J Biol Chem. 1995 Jun 9;270(23):13932–13936. doi: 10.1074/jbc.270.23.13932. [DOI] [PubMed] [Google Scholar]
  18. Kato N., Karuniawati A., Jotwani R., Kato H., Watanabe K., Ueno K. Isolation of enterotoxigenic Bacteroides fragilis from extraintestinal sites by cell culture assay. Clin Infect Dis. 1995 Jun;20 (Suppl 2):S141–S141. doi: 10.1093/clinids/20.supplement_2.s141. [DOI] [PubMed] [Google Scholar]
  19. Keusch G. T., Jacewicz M. Primary amines and chloroquine inhibit cytotoxic responses to Shigella toxin and permit late antibody rescue of toxin treated cells. Biochem Biophys Res Commun. 1984 May 31;121(1):69–76. doi: 10.1016/0006-291x(84)90689-2. [DOI] [PubMed] [Google Scholar]
  20. Koshy S. S., Montrose M. H., Sears C. L. Human intestinal epithelial cells swell and demonstrate actin rearrangement in response to the metalloprotease toxin of Bacteroides fragilis. Infect Immun. 1996 Dec;64(12):5022–5028. doi: 10.1128/iai.64.12.5022-5028.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lencer W. I., Delp C., Neutra M. R., Madara J. L. Mechanism of cholera toxin action on a polarized human intestinal epithelial cell line: role of vesicular traffic. J Cell Biol. 1992 Jun;117(6):1197–1209. doi: 10.1083/jcb.117.6.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lencer W. I., Strohmeier G., Moe S., Carlson S. L., Constable C. T., Madara J. L. Signal transduction by cholera toxin: processing in vesicular compartments does not require acidification. Am J Physiol. 1995 Oct;269(4 Pt 1):G548–G557. doi: 10.1152/ajpgi.1995.269.4.G548. [DOI] [PubMed] [Google Scholar]
  23. Lencer W. I., de Almeida J. B., Moe S., Stow J. L., Ausiello D. A., Madara J. L. Entry of cholera toxin into polarized human intestinal epithelial cells. Identification of an early brefeldin A sensitive event required for A1-peptide generation. J Clin Invest. 1993 Dec;92(6):2941–2951. doi: 10.1172/JCI116917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lima A. A., Lyerly D. M., Wilkins T. D., Innes D. J., Guerrant R. L. Effects of Clostridium difficile toxins A and B in rabbit small and large intestine in vivo and on cultured cells in vitro. Infect Immun. 1988 Mar;56(3):582–588. doi: 10.1128/iai.56.3.582-588.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McClane B. A. Clostridium perfringens enterotoxin acts by producing small molecule permeability alterations in plasma membranes. Toxicology. 1994 Feb 28;87(1-3):43–67. doi: 10.1016/0300-483x(94)90154-6. [DOI] [PubMed] [Google Scholar]
  26. McClane B. A., Wnek A. P. Studies of Clostridium perfringens enterotoxin action at different temperatures demonstrate a correlation between complex formation and cytotoxicity. Infect Immun. 1990 Sep;58(9):3109–3115. doi: 10.1128/iai.58.9.3109-3115.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mellor I. R., Thomas D. H., Sansom M. S. Properties of ion channels formed by Staphylococcus aureus delta-toxin. Biochim Biophys Acta. 1988 Jul 21;942(2):280–294. doi: 10.1016/0005-2736(88)90030-2. [DOI] [PubMed] [Google Scholar]
  28. Mitchell T. J., Ketley J. M., Burdon D. W., Candy D. C., Stephen J. Biological mode of action of Clostridium difficile toxin A: a novel enterotoxin. J Med Microbiol. 1987 May;23(3):211–219. doi: 10.1099/00222615-23-3-211. [DOI] [PubMed] [Google Scholar]
  29. Moncrief J. S., Obiso R., Jr, Barroso L. A., Kling J. J., Wright R. L., Van Tassell R. L., Lyerly D. M., Wilkins T. D. The enterotoxin of Bacteroides fragilis is a metalloprotease. Infect Immun. 1995 Jan;63(1):175–181. doi: 10.1128/iai.63.1.175-181.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Montesano R., Roth J., Robert A., Orci L. Non-coated membrane invaginations are involved in binding and internalization of cholera and tetanus toxins. Nature. 1982 Apr 15;296(5858):651–653. doi: 10.1038/296651a0. [DOI] [PubMed] [Google Scholar]
  31. Moore W. E., Cato E. P., Holdeman L. V. Anaerobic bacteria of the gastrointestinal flora and their occurrence in clinical infections. J Infect Dis. 1969 Jun;119(6):641–649. doi: 10.1093/infdis/119.6.641. [DOI] [PubMed] [Google Scholar]
  32. Moore W. E., Holdeman L. V. Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol. 1974 May;27(5):961–979. doi: 10.1128/am.27.5.961-979.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mundy L. M., Sears C. L. Detection of toxin production by Bacteroides fragilis: assay development and screening of extraintestinal clinical isolates. Clin Infect Dis. 1996 Aug;23(2):269–276. doi: 10.1093/clinids/23.2.269. [DOI] [PubMed] [Google Scholar]
  34. Myers L. L., Firehammer B. D., Shoop D. S., Border M. M. Bacteroides fragilis: a possible cause of acute diarrheal disease in newborn lambs. Infect Immun. 1984 May;44(2):241–244. doi: 10.1128/iai.44.2.241-244.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Obiso R. J., Jr, Lyerly D. M., Van Tassell R. L., Wilkins T. D. Proteolytic activity of the Bacteroides fragilis enterotoxin causes fluid secretion and intestinal damage in vivo. Infect Immun. 1995 Oct;63(10):3820–3826. doi: 10.1128/iai.63.10.3820-3826.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Orlandi P. A., Curran P. K., Fishman P. H. Brefeldin A blocks the response of cultured cells to cholera toxin. Implications for intracellular trafficking in toxin action. J Biol Chem. 1993 Jun 5;268(16):12010–12016. [PubMed] [Google Scholar]
  37. Parton R. G., Joggerst B., Simons K. Regulated internalization of caveolae. J Cell Biol. 1994 Dec;127(5):1199–1215. doi: 10.1083/jcb.127.5.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Polk B. F., Kasper D. L. Bacteroides fragilis subspecies in clinical isolates. Ann Intern Med. 1977 May;86(5):569–571. doi: 10.7326/0003-4819-86-5-569. [DOI] [PubMed] [Google Scholar]
  39. Prydz K., Hansen S. H., Sandvig K., van Deurs B. Effects of brefeldin A on endocytosis, transcytosis and transport to the Golgi complex in polarized MDCK cells. J Cell Biol. 1992 Oct;119(2):259–272. doi: 10.1083/jcb.119.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sack R. B., Albert M. J., Alam K., Neogi P. K., Akbar M. S. Isolation of enterotoxigenic Bacteroides fragilis from Bangladeshi children with diarrhea: a controlled study. J Clin Microbiol. 1994 Apr;32(4):960–963. doi: 10.1128/jcm.32.4.960-963.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sack R. B., Myers L. L., Almeido-Hill J., Shoop D. S., Bradbury W. C., Reid R., Santosham M. Enterotoxigenic Bacteroides fragilis: epidemiologic studies of its role as a human diarrhoeal pathogen. J Diarrhoeal Dis Res. 1992 Mar;10(1):4–9. [PubMed] [Google Scholar]
  42. San Joaquin V. H., Griffis J. C., Lee C., Sears C. L. Association of Bacteroides fragilis with childhood diarrhea. Scand J Infect Dis. 1995;27(3):211–215. doi: 10.3109/00365549509019011. [DOI] [PubMed] [Google Scholar]
  43. Sears C. L., Myers L. L., Lazenby A., Van Tassell R. L. Enterotoxigenic Bacteroides fragilis. Clin Infect Dis. 1995 Jun;20 (Suppl 2):S142–S148. doi: 10.1093/clinids/20.supplement_2.s142. [DOI] [PubMed] [Google Scholar]
  44. Sukumar M., Rizo J., Wall M., Dreyfus L. A., Kupersztoch Y. M., Gierasch L. M. The structure of Escherichia coli heat-stable enterotoxin b by nuclear magnetic resonance and circular dichroism. Protein Sci. 1995 Sep;4(9):1718–1729. doi: 10.1002/pro.5560040907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tran D., Carpentier J. L., Sawano F., Gorden P., Orci L. Ligands internalized through coated or noncoated invaginations follow a common intracellular pathway. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7957–7961. doi: 10.1073/pnas.84.22.7957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Trucksis M., Galen J. E., Michalski J., Fasano A., Kaper J. B. Accessory cholera enterotoxin (Ace), the third toxin of a Vibrio cholerae virulence cassette. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5267–5271. doi: 10.1073/pnas.90.11.5267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Van Tassell R. L., Lyerly D. M., Wilkins T. D. Characterization of enterotoxigenic Bacteroides fragilis by a toxin-specific enzyme-linked immunosorbent assay. Clin Diagn Lab Immunol. 1994 Sep;1(5):578–584. doi: 10.1128/cdli.1.5.578-584.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Van Tassell R. L., Lyerly D. M., Wilkins T. D. Purification and characterization of an enterotoxin from Bacteroides fragilis. Infect Immun. 1992 Apr;60(4):1343–1350. doi: 10.1128/iai.60.4.1343-1350.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Weikel C. S., Grieco F. D., Reuben J., Myers L. L., Sack R. B. Human colonic epithelial cells, HT29/C1, treated with crude Bacteroides fragilis enterotoxin dramatically alter their morphology. Infect Immun. 1992 Feb;60(2):321–327. doi: 10.1128/iai.60.2.321-327.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES