Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Dec;64(12):5092–5097. doi: 10.1128/iai.64.12.5092-5097.1996

Importance of beta2-microglobulin in murine resistance to mucosal and systemic candidiasis.

E Balish 1, F A Vazquez-Torres 1, J Jones-Carson 1, R D Wagner 1, T Warner 1
PMCID: PMC174493  PMID: 8945551

Abstract

beta2-Microglobulin knockout (beta2m-/-) mice, which lack major histocompatibility complex class I expression and are deficient in CD8alpha/beta T-cell receptor alpha/beta (TcRalpha/beta) T cells, were as resistant to systemic (intravenous) challenge with Candida albicans as immunocompetent controls. Conversely, the beta2m-/- mutant mice were susceptible to systemic candidiasis of endogenous origin despite the induction of C. albicans-specific antibody and cell-mediated immune responses after colonization with a pure culture of C. albicans. Despite some superficial and transient infections of tongues and esophagi (detected by histology) at 1 to 2 weeks after oral colonization and gastric infections (cardia-antrum section) which were observed at 10 to 12 weeks after oral challenge, C. albicans-colonized beta2m-/- mice showed an overall resistance to candidiasis in other mucosal and cutaneous tissues. These data suggest that immune defects that accompany the loss of beta2-microglobulin play an important role in murine resistance to gastric and disseminated candidiasis of endogenous (intestinal tract) origin and that innate immunity and CD4 TcRalpha/beta as well as CD8alpha/alpha TcRalpha/beta (or -gamma/delta) T cells play an important role in resistance to systemic, cutaneous, and nongastric mucosal tissues.

Full Text

The Full Text of this article is available as a PDF (489.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashman R. B. Mouse candidiasis. II. Host responses are T-cell dependent and regulated by genes in the major histocompatibility complex. Immunogenetics. 1987;25(3):200–203. doi: 10.1007/BF00344035. [DOI] [PubMed] [Google Scholar]
  2. Balish E., Balish M. J., Salkowski C. A., Lee K. W., Bartizal K. F. Colonization of congenitally athymic, gnotobiotic mice by Candida albicans. Appl Environ Microbiol. 1984 Apr;47(4):647–652. doi: 10.1128/aem.47.4.647-652.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balish E., Filutowicz H., Oberley T. D. Correlates of cell-mediated immunity in Candida albicans-colonized gnotobiotic mice. Infect Immun. 1990 Jan;58(1):107–113. doi: 10.1128/iai.58.1.107-113.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Balish E., Filutowicz H. Serum antibody response of gnotobiotic athymic and euthymic mice following alimentary tract colonization and infection with Candida albicans. Can J Microbiol. 1991 Mar;37(3):204–210. doi: 10.1139/m91-031. [DOI] [PubMed] [Google Scholar]
  5. Balish E., Jensen J., Warner T., Brekke J., Leonard B. Mucosal and disseminated candidiasis in gnotobiotic SCID mice. J Med Vet Mycol. 1993;31(2):143–154. doi: 10.1080/02681219380000161. [DOI] [PubMed] [Google Scholar]
  6. Beagley K. W., Fujihashi K., Lagoo A. S., Lagoo-Deenadaylan S., Black C. A., Murray A. M., Sharmanov A. T., Yamamoto M., McGhee J. R., Elson C. O. Differences in intraepithelial lymphocyte T cell subsets isolated from murine small versus large intestine. J Immunol. 1995 Jun 1;154(11):5611–5619. [PubMed] [Google Scholar]
  7. Beckman E. M., Porcelli S. A., Morita C. T., Behar S. M., Furlong S. T., Brenner M. B. Recognition of a lipid antigen by CD1-restricted alpha beta+ T cells. Nature. 1994 Dec 15;372(6507):691–694. doi: 10.1038/372691a0. [DOI] [PubMed] [Google Scholar]
  8. Bendelac A., Lantz O., Quimby M. E., Yewdell J. W., Bennink J. R., Brutkiewicz R. R. CD1 recognition by mouse NK1+ T lymphocytes. Science. 1995 May 12;268(5212):863–865. doi: 10.1126/science.7538697. [DOI] [PubMed] [Google Scholar]
  9. Beno D. W., Mathews H. L. Growth inhibition of Candida albicans by interleukin-2-activated splenocytes. Infect Immun. 1992 Mar;60(3):853–863. doi: 10.1128/iai.60.3.853-863.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Beno D. W., Mathews H. L. Quantitative measurement of lymphocyte mediated growth inhibition of Candida albicans. J Immunol Methods. 1993 Sep 15;164(2):155–164. doi: 10.1016/0022-1759(93)90308-t. [DOI] [PubMed] [Google Scholar]
  11. Beno D. W., Stöver A. G., Mathews H. L. Growth inhibition of Candida albicans hyphae by CD8+ lymphocytes. J Immunol. 1995 May 15;154(10):5273–5281. [PubMed] [Google Scholar]
  12. Bleicher P. A., Balk S. P., Hagen S. J., Blumberg R. S., Flotte T. J., Terhorst C. Expression of murine CD1 on gastrointestinal epithelium. Science. 1990 Nov 2;250(4981):679–682. doi: 10.1126/science.1700477. [DOI] [PubMed] [Google Scholar]
  13. Cantorna M. T., Balish E. Role of CD4+ lymphocytes in resistance to mucosal candidiasis. Infect Immun. 1991 Jul;59(7):2447–2455. doi: 10.1128/iai.59.7.2447-2455.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cenci E., Romani L., Vecchiarelli A., Puccetti P., Bistoni F. Role of L3T4+ lymphocytes in protective immunity to systemic Candida albicans infection in mice. Infect Immun. 1989 Nov;57(11):3581–3587. doi: 10.1128/iai.57.11.3581-3587.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Coker L. A., 3rd, Mercadal C. M., Rouse B. T., Moore R. N. Differential effects of CD4+ and CD8+ cells in acute, systemic murine candidosis. J Leukoc Biol. 1992 Mar;51(3):305–306. doi: 10.1002/jlb.51.3.305. [DOI] [PubMed] [Google Scholar]
  16. Cole G. T., Saha K., Seshan K. R., Lynn K. T., Franco M., Wong P. K. Retrovirus-induced immunodeficiency in mice exacerbates gastrointestinal candidiasis. Infect Immun. 1992 Oct;60(10):4168–4178. doi: 10.1128/iai.60.10.4168-4178.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Correa I., Bix M., Liao N. S., Zijlstra M., Jaenisch R., Raulet D. Most gamma delta T cells develop normally in beta 2-microglobulin-deficient mice. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):653–657. doi: 10.1073/pnas.89.2.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Deepe G. S., Jr Role of CD8+ T cells in host resistance to systemic infection with Histoplasma capsulatum in mice. J Immunol. 1994 Apr 1;152(7):3491–3500. [PubMed] [Google Scholar]
  19. Emoto M., Neuhaus O., Emoto Y., Kaufmann S. H. Influence of beta 2-microglobulin expression on gamma interferon secretion and target cell lysis by intraepithelial lymphocytes during intestinal Listeria monocytogenes infection. Infect Immun. 1996 Feb;64(2):569–575. doi: 10.1128/iai.64.2.569-575.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Fauci A. S., Schnittman S. M., Poli G., Koenig S., Pantaleo G. NIH conference. Immunopathogenic mechanisms in human immunodeficiency virus (HIV) infection. Ann Intern Med. 1991 Apr 15;114(8):678–693. doi: 10.7326/0003-4819-114-8-678. [DOI] [PubMed] [Google Scholar]
  21. Fidel P. L., Jr, Lynch M. E., Sobel J. D. Circulating CD4 and CD8 T cells have little impact on host defense against experimental vaginal candidiasis. Infect Immun. 1995 Jul;63(7):2403–2408. doi: 10.1128/iai.63.7.2403-2408.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Flynn J. L., Goldstein M. M., Triebold K. J., Koller B., Bloom B. R. Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12013–12017. doi: 10.1073/pnas.89.24.12013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Garner R. E., Childress A. M., Human L. G., Domer J. E. Characterization of Candida albicans mannan-induced, mannan-specific delayed hypersensitivity suppressor cells. Infect Immun. 1990 Aug;58(8):2613–2620. doi: 10.1128/iai.58.8.2613-2620.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Gautreaux M. D., Deitch E. A., Berg R. D. T lymphocytes in host defense against bacterial translocation from the gastrointestinal tract. Infect Immun. 1994 Jul;62(7):2874–2884. doi: 10.1128/iai.62.7.2874-2884.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Greenfield R. A. Host defense system interactions with Candida. J Med Vet Mycol. 1992;30(2):89–104. [PubMed] [Google Scholar]
  26. Hill J. O., Harmsen A. G. Intrapulmonary growth and dissemination of an avirulent strain of Cryptococcus neoformans in mice depleted of CD4+ or CD8+ T cells. J Exp Med. 1991 Mar 1;173(3):755–758. doi: 10.1084/jem.173.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Huffnagle G. B., Lipscomb M. F., Lovchik J. A., Hoag K. A., Street N. E. The role of CD4+ and CD8+ T cells in the protective inflammatory response to a pulmonary cryptococcal infection. J Leukoc Biol. 1994 Jan;55(1):35–42. doi: 10.1002/jlb.55.1.35. [DOI] [PubMed] [Google Scholar]
  28. Jensen J., Warner T., Balish E. Resistance of SCID mice to Candida albicans administered intravenously or colonizing the gut: role of polymorphonuclear leukocytes and macrophages. J Infect Dis. 1993 Apr;167(4):912–919. doi: 10.1093/infdis/167.4.912. [DOI] [PubMed] [Google Scholar]
  29. Jones-Carson J., Vazquez-Torres A., van der Heyde H. C., Warner T., Wagner R. D., Balish E. Gamma delta T cell-induced nitric oxide production enhances resistance to mucosal candidiasis. Nat Med. 1995 Jun;1(6):552–557. doi: 10.1038/nm0695-552. [DOI] [PubMed] [Google Scholar]
  30. Kaufmann S. H. CD8+ T lymphocytes in intracellular microbial infections. Immunol Today. 1988 Jun;9(6):168–174. doi: 10.1016/0167-5699(88)91292-3. [DOI] [PubMed] [Google Scholar]
  31. Koller B. H., Marrack P., Kappler J. W., Smithies O. Normal development of mice deficient in beta 2M, MHC class I proteins, and CD8+ T cells. Science. 1990 Jun 8;248(4960):1227–1230. doi: 10.1126/science.2112266. [DOI] [PubMed] [Google Scholar]
  32. Mahanty S., Greenfield R. A., Joyce W. A., Kincade P. W. Inoculation candidiasis in a murine model of severe combined immunodeficiency syndrome. Infect Immun. 1988 Dec;56(12):3162–3166. doi: 10.1128/iai.56.12.3162-3166.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Matthews R., Burnie J., Smith D., Clark I., Midgley J., Conolly M., Gazzard B. Candida and AIDS: evidence for protective antibody. Lancet. 1988 Jul 30;2(8605):263–266. doi: 10.1016/s0140-6736(88)92547-0. [DOI] [PubMed] [Google Scholar]
  34. Matthews R., Burnie J. The role of hsp90 in fungal infection. Immunol Today. 1992 Sep;13(9):345–348. doi: 10.1016/0167-5699(92)90169-8. [DOI] [PubMed] [Google Scholar]
  35. Morrison R. P., Feilzer K., Tumas D. B. Gene knockout mice establish a primary protective role for major histocompatibility complex class II-restricted responses in Chlamydia trachomatis genital tract infection. Infect Immun. 1995 Dec;63(12):4661–4668. doi: 10.1128/iai.63.12.4661-4668.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Muller D., Koller B. H., Whitton J. L., LaPan K. E., Brigman K. K., Frelinger J. A. LCMV-specific, class II-restricted cytotoxic T cells in beta 2-microglobulin-deficient mice. Science. 1992 Mar 20;255(5051):1576–1578. doi: 10.1126/science.1347959. [DOI] [PubMed] [Google Scholar]
  37. Narayanan R., Joyce W. A., Greenfield R. A. Gastrointestinal candidiasis in a murine model of severe combined immunodeficiency syndrome. Infect Immun. 1991 Jun;59(6):2116–2119. doi: 10.1128/iai.59.6.2116-2119.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Nielsen H., Bentsen K. D., Højtved L., Willemoes E. H., Scheutz F., Schiødt M., Stoltze K., Pindborg J. J. Oral candidiasis and immune status of HIV-infected patients. J Oral Pathol Med. 1994 Mar;23(3):140–143. doi: 10.1111/j.1600-0714.1994.tb01102.x. [DOI] [PubMed] [Google Scholar]
  39. Porcelli S., Brenner M. B., Greenstein J. L., Balk S. P., Terhorst C., Bleicher P. A. Recognition of cluster of differentiation 1 antigens by human CD4-CD8-cytolytic T lymphocytes. Nature. 1989 Oct 5;341(6241):447–450. doi: 10.1038/341447a0. [DOI] [PubMed] [Google Scholar]
  40. Porcelli S., Morita C. T., Brenner M. B. CD1b restricts the response of human CD4-8- T lymphocytes to a microbial antigen. Nature. 1992 Dec 10;360(6404):593–597. doi: 10.1038/360593a0. [DOI] [PubMed] [Google Scholar]
  41. Roberts A. D., Ordway D. J., Orme I. M. Listeria monocytogenes infection in beta 2 microglobulin-deficient mice. Infect Immun. 1993 Mar;61(3):1113–1116. doi: 10.1128/iai.61.3.1113-1116.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rocha B., Vassalli P., Guy-Grand D. The extrathymic T-cell development pathway. Immunol Today. 1992 Nov;13(11):449–454. doi: 10.1016/0167-5699(92)90074-H. [DOI] [PubMed] [Google Scholar]
  43. Romani L., Howard D. H. Mechanisms of resistance to fungal infections. Curr Opin Immunol. 1995 Aug;7(4):517–523. doi: 10.1016/0952-7915(95)80097-2. [DOI] [PubMed] [Google Scholar]
  44. Romani L., Mencacci A., Cenci E., Mosci P., Vitellozzi G., Grohmann U., Puccetti P., Bistoni F. Course of primary candidiasis in T cell-depleted mice infected with attenuated variant cells. J Infect Dis. 1992 Dec;166(6):1384–1392. doi: 10.1093/infdis/166.6.1384. [DOI] [PubMed] [Google Scholar]
  45. Romani L., Mencacci A., Tonnetti L., Spaccapelo R., Cenci E., Wolf S., Puccetti P., Bistoni F. Interleukin-12 but not interferon-gamma production correlates with induction of T helper type-1 phenotype in murine candidiasis. Eur J Immunol. 1994 Apr;24(4):909–915. doi: 10.1002/eji.1830240419. [DOI] [PubMed] [Google Scholar]
  46. Romani L., Mocci S., Cenci E., Rossi R., Puccetti P., Bistoni F. Candida albicans-specific Ly-2+ lymphocytes with cytolytic activity. Eur J Immunol. 1991 Jun;21(6):1567–1570. doi: 10.1002/eji.1830210636. [DOI] [PubMed] [Google Scholar]
  47. Rothenberg B. E., Voland J. R. beta2 knockout mice develop parenchymal iron overload: A putative role for class I genes of the major histocompatibility complex in iron metabolism. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1529–1534. doi: 10.1073/pnas.93.4.1529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Rottenberg M. E., Bakhiet M., Olsson T., Kristensson K., Mak T., Wigzell H., Orn A. Differential susceptibilities of mice genomically deleted of CD4 and CD8 to infections with Trypanosoma cruzi or Trypanosoma brucei. Infect Immun. 1993 Dec;61(12):5129–5133. doi: 10.1128/iai.61.12.5129-5133.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Shawar S. M., Vyas J. M., Rodgers J. R., Rich R. R. Antigen presentation by major histocompatibility complex class I-B molecules. Annu Rev Immunol. 1994;12:839–880. doi: 10.1146/annurev.iy.12.040194.004203. [DOI] [PubMed] [Google Scholar]
  50. Stroynowski I. Molecules related to class-I major histocompatibility complex antigens. Annu Rev Immunol. 1990;8:501–530. doi: 10.1146/annurev.iy.08.040190.002441. [DOI] [PubMed] [Google Scholar]
  51. Wang Z. E., Reiner S. L., Hatam F., Heinzel F. P., Bouvier J., Turck C. W., Locksley R. M. Targeted activation of CD8 cells and infection of beta 2-microglobulin-deficient mice fail to confirm a primary protective role for CD8 cells in experimental leishmaniasis. J Immunol. 1993 Aug 15;151(4):2077–2086. [PubMed] [Google Scholar]
  52. Zijlstra M., Bix M., Simister N. E., Loring J. M., Raulet D. H., Jaenisch R. Beta 2-microglobulin deficient mice lack CD4-8+ cytolytic T cells. Nature. 1990 Apr 19;344(6268):742–746. doi: 10.1038/344742a0. [DOI] [PubMed] [Google Scholar]
  53. von Boehmer H. Developmental biology of T cells in T cell-receptor transgenic mice. Annu Rev Immunol. 1990;8:531–556. doi: 10.1146/annurev.iy.08.040190.002531. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES