Skip to main content
Sexually Transmitted Infections logoLink to Sexually Transmitted Infections
. 2005 Jun;81(3):239–241. doi: 10.1136/sti.2004.010413

Comparison of non-invasive sampling methods for detection of HPV in rural African women

N Lack 1, B West 1, D Jeffries 1, G Ekpo 1, L Morison 1, W Soutter 1, G Walraven 1, L Boryseiwicz 1
PMCID: PMC1744971  PMID: 15923294

Abstract

Background: The prevalence of cervical cancer is extremely high in low income countries, primarily because of a lack of cytological screening. The link between human papillomavirus (HPV) and cervical cancer has long been recognised, and it has been suggested that isolated HPV testing in women who do not participate in existing screening programmes may be used to identify women at higher risk of developing cervical cancer. This community based study compares two self administered techniques for detecting HPV (tampons and self administered swabs) with a clinician directed technique, the cervical cytobrush.

Methods: 377 rural women were interviewed and of these 210 women had full gynaecological examination, and accepted all three sampling methods for HPV. HPV typing of DNA extracts was performed using polymerase chain reaction and enzyme linked immunosorbent assay techniques.

Results: Using the cervical cytobrush as the gold standard, self administered swabs (SAS) showed a sensitivity of 63.9%, and tampons showed a sensitivity of 72.4%. The acceptability of these two tests was 97.1% and 84.6% respectively. When combining acceptability with sensitivity, the SAS detected 61.9% and the tampons detected 60.9% of the true positives.

Conclusion: In a setting where women are at a considerable risk of developing cervical cancer, with no access to a formal screening programme, self directed HPV testing could be a useful screening tool in identifying those women at increased risk who may require further investigation.

Full Text

The Full Text of this article is available as a PDF (58.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bosch F. X., Manos M. M., Muñoz N., Sherman M., Jansen A. M., Peto J., Schiffman M. H., Moreno V., Kurman R., Shah K. V. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J Natl Cancer Inst. 1995 Jun 7;87(11):796–802. doi: 10.1093/jnci/87.11.796. [DOI] [PubMed] [Google Scholar]
  2. Cuzick J., Szarewski A., Cubie H., Hulman G., Kitchener H., Luesley D., McGoogan E., Menon U., Terry G., Edwards R. Management of women who test positive for high-risk types of human papillomavirus: the HART study. Lancet. 2003 Dec 6;362(9399):1871–1876. doi: 10.1016/S0140-6736(03)14955-0. [DOI] [PubMed] [Google Scholar]
  3. Cuzick J., Szarewski A., Terry G., Ho L., Hanby A., Maddox P., Anderson M., Kocjan G., Steele S. T., Guillebaud J. Human papillomavirus testing in primary cervical screening. Lancet. 1995 Jun 17;345(8964):1533–1536. doi: 10.1016/s0140-6736(95)91086-7. [DOI] [PubMed] [Google Scholar]
  4. Harper Diane M., Noll Walter W., Belloni Dorothy R., Cole Bernard F. Randomized clinical trial of PCR-determined human papillomavirus detection methods: self-sampling versus clinician-directed--biologic concordance and women's preferences. Am J Obstet Gynecol. 2002 Mar;186(3):365–373. doi: 10.1067/mob.2002.121076. [DOI] [PubMed] [Google Scholar]
  5. Jacobs M. V., Snijders P. J., van den Brule A. J., Helmerhorst T. J., Meijer C. J., Walboomers J. M. A general primer GP5+/GP6(+)-mediated PCR-enzyme immunoassay method for rapid detection of 14 high-risk and 6 low-risk human papillomavirus genotypes in cervical scrapings. J Clin Microbiol. 1997 Mar;35(3):791–795. doi: 10.1128/jcm.35.3.791-795.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Nobbenhuis M. A., Walboomers J. M., Helmerhorst T. J., Rozendaal L., Remmink A. J., Risse E. K., van der Linden H. C., Voorhorst F. J., Kenemans P., Meijer C. J. Relation of human papillomavirus status to cervical lesions and consequences for cervical-cancer screening: a prospective study. Lancet. 1999 Jul 3;354(9172):20–25. doi: 10.1016/S0140-6736(98)12490-X. [DOI] [PubMed] [Google Scholar]
  7. Parkin D. M., Pisani P., Ferlay J. Estimates of the worldwide incidence of 25 major cancers in 1990. Int J Cancer. 1999 Mar 15;80(6):827–841. doi: 10.1002/(sici)1097-0215(19990315)80:6<827::aid-ijc6>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
  8. Salmerón Jorge, Lazcano-Ponce Eduardo, Lorincz Attila, Hernández Mauricio, Hernández Pilar, Leyva Ahideé, Uribe Mario, Manzanares Horacio, Antunez Alfredo, Carmona Enrique. Comparison of HPV-based assays with Papanicolaou smears for cervical cancer screening in Morelos State, Mexico. Cancer Causes Control. 2003 Aug;14(6):505–512. doi: 10.1023/a:1024806707399. [DOI] [PubMed] [Google Scholar]
  9. Walboomers J. M., Jacobs M. V., Manos M. M., Bosch F. X., Kummer J. A., Shah K. V., Snijders P. J., Peto J., Meijer C. J., Muñoz N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999 Sep;189(1):12–19. doi: 10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  10. Walraven G., Scherf C., West B., Ekpo G., Paine K., Coleman R., Bailey R., Morison L. The burden of reproductive-organ disease in rural women in The Gambia, West Africa. Lancet. 2001 Apr 14;357(9263):1161–1167. doi: 10.1016/S0140-6736(00)04333-6. [DOI] [PubMed] [Google Scholar]
  11. zur Hausen H. Condylomata acuminata and human genital cancer. Cancer Res. 1976 Feb;36(2 Pt 2):794–794. [PubMed] [Google Scholar]

Articles from Sexually Transmitted Infections are provided here courtesy of BMJ Publishing Group

RESOURCES