Abstract
The role of the surface membrane Zn-proteinase in protecting the cellular integrity of the macrophage parasite Leishmania mexicana amazonensis from intraphagolysosomal cytolysis was studied. These cells lose their infectivity to host macrophages after prolonged cultivation in axenic growth medium. The virulent and attenuated variants of the parasite cells were cloned. Failure of these attenuated parasite cells to survive inside macrophage phagolysosomes is associated with 20- to 50-fold reduction in the expression of surface gp63 protein. In situ inhibition of gp63 proteinase activity inside Leishmania-infected macrophage phagolysosomes with targeted delivery of an inhibitor of gp63 proteinase activity, 1,10-phenanthroline, selectively eliminated intracellular Leishmania amastigotes, further suggesting the importance of this proteinase in phagolysosomal survival of the parasite. An upstream sequence (US) of the gp63 gene was cloned in front of the bacterial chloramphenicol acetyltransferase (CAT) gene in plasmid pCATbasic. Transfection of L. mexicana amazonensis cells with this recombinant plasmid showed that expression of the CAT gene from this US is 15- to 20-fold higher in virulent clones than in avirulent clones of the parasite. Band shift analysis with the cloned US also showed that binding of protein(s) was 15- to 20-fold higher in virulent cell extract than in avirulent cell extract. Coating of attenuated cells or liposomes with proteolytically active gp63 protects them from degradation inside macrophage phagolysosomes. These results suggest a novel mechanism of survival of this phagolysosomal parasite with the help of its surface Zn-proteinase.
Full Text
The Full Text of this article is available as a PDF (363.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abdelhak S., Louzir H., Timm J., Blel L., Benlasfar Z., Lagranderie M., Gheorghiu M., Dellagi K., Gicquel B. Recombinant BCG expressing the leishmania surface antigen Gp63 induces protective immunity against Leishmania major infection in BALB/c mice. Microbiology. 1995 Jul;141(Pt 7):1585–1592. doi: 10.1099/13500872-141-7-1585. [DOI] [PubMed] [Google Scholar]
- Alexander J., Russell D. G. The interaction of Leishmania species with macrophages. Adv Parasitol. 1992;31:175–254. doi: 10.1016/s0065-308x(08)60022-6. [DOI] [PubMed] [Google Scholar]
- Basu S. K. Receptor-mediated endocytosis of macromolecular conjugates in selective drug delivery. Biochem Pharmacol. 1990 Nov 1;40(9):1941–1946. doi: 10.1016/0006-2952(90)90222-7. [DOI] [PubMed] [Google Scholar]
- Beverley S. M., Clayton C. E. Transfection of Leishmania and Trypanosoma brucei by electroporation. Methods Mol Biol. 1993;21:333–348. doi: 10.1385/0-89603-239-6:333. [DOI] [PubMed] [Google Scholar]
- Bouvier J., Bordier C., Vogel H., Reichelt R., Etges R. Characterization of the promastigote surface protease of Leishmania as a membrane-bound zinc endopeptidase. Mol Biochem Parasitol. 1989 Dec;37(2):235–245. doi: 10.1016/0166-6851(89)90155-2. [DOI] [PubMed] [Google Scholar]
- Brittingham A., Morrison C. J., McMaster W. R., McGwire B. S., Chang K. P., Mosser D. M. Role of the Leishmania surface protease gp63 in complement fixation, cell adhesion, and resistance to complement-mediated lysis. J Immunol. 1995 Sep 15;155(6):3102–3111. [PubMed] [Google Scholar]
- Brown M. S., Goldstein J. L. Atherosclerosis. Scavenging for receptors. Nature. 1990 Feb 8;343(6258):508–509. doi: 10.1038/343508a0. [DOI] [PubMed] [Google Scholar]
- Burstein Y., Walsh K. A., Neurath H. Evidence of an essential histidine residue in thermolysin. Biochemistry. 1974 Jan 1;13(1):205–210. doi: 10.1021/bi00698a030. [DOI] [PubMed] [Google Scholar]
- Button L. L., McMaster W. R. Molecular cloning of the major surface antigen of leishmania. J Exp Med. 1988 Feb 1;167(2):724–729. doi: 10.1084/jem.167.2.724. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Button L. L., Wilson G., Astell C. R., McMaster W. R. Recombinant Leishmania surface glycoprotein GP63 is secreted in the baculovirus expression system as a latent metalloproteinase. Gene. 1993 Nov 30;134(1):75–81. doi: 10.1016/0378-1119(93)90176-4. [DOI] [PubMed] [Google Scholar]
- Chang K. P., Chaudhuri G., Fong D. Molecular determinants of Leishmania virulence. Annu Rev Microbiol. 1990;44:499–529. doi: 10.1146/annurev.mi.44.100190.002435. [DOI] [PubMed] [Google Scholar]
- Chaudhuri G., Chang K. P. A simple method for isolation of extrachromosomal circular DNA in unicellular eukaryotes. Nucleic Acids Res. 1988 Mar 25;16(5):2341–2341. doi: 10.1093/nar/16.5.2341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chaudhuri G., Chang K. P. Acid protease activity of a major surface membrane glycoprotein (gp63) from Leishmania mexicana promastigotes. Mol Biochem Parasitol. 1988 Jan 1;27(1):43–52. doi: 10.1016/0166-6851(88)90023-0. [DOI] [PubMed] [Google Scholar]
- Chaudhuri G., Chaudhuri M., Pan A., Chang K. P. Surface acid proteinase (gp63) of Leishmania mexicana. A metalloenzyme capable of protecting liposome-encapsulated proteins from phagolysosomal degradation by macrophages. J Biol Chem. 1989 May 5;264(13):7483–7489. [PubMed] [Google Scholar]
- Chaudhuri G., Mukhopadhyay A., Basu S. K. Selective delivery of drugs to macrophages through a highly specific receptor. An efficient chemotherapeutic approach against leishmaniasis. Biochem Pharmacol. 1989 Sep 15;38(18):2995–3002. doi: 10.1016/0006-2952(89)90007-5. [DOI] [PubMed] [Google Scholar]
- Connell N. D., Medina-Acosta E., McMaster W. R., Bloom B. R., Russell D. G. Effective immunization against cutaneous leishmaniasis with recombinant bacille Calmette-Guérin expressing the Leishmania surface proteinase gp63. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11473–11477. doi: 10.1073/pnas.90.24.11473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cruz A. K., Titus R., Beverley S. M. Plasticity in chromosome number and testing of essential genes in Leishmania by targeting. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1599–1603. doi: 10.1073/pnas.90.4.1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Descoteaux A., Luo Y., Turco S. J., Beverley S. M. A specialized pathway affecting virulence glycoconjugates of Leishmania. Science. 1995 Sep 29;269(5232):1869–1872. doi: 10.1126/science.7569927. [DOI] [PubMed] [Google Scholar]
- Detke S., Chaudhuri G., Kink J. A., Chang K. P. DNA amplification in tunicamycin-resistant Leishmania mexicana. Multicopies of a single 63-kilobase supercoiled molecule and their expression. J Biol Chem. 1988 Mar 5;263(7):3418–3424. [PubMed] [Google Scholar]
- Etges R., Bouvier J., Bordier C. The major surface protein of Leishmania promastigotes is anchored in the membrane by a myristic acid-labeled phospholipid. EMBO J. 1986 Mar;5(3):597–601. doi: 10.1002/j.1460-2075.1986.tb04252.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frommel T. O., Button L. L., Fujikura Y., McMaster W. R. The major surface glycoprotein (GP63) is present in both life stages of Leishmania. Mol Biochem Parasitol. 1990 Jan 1;38(1):25–32. doi: 10.1016/0166-6851(90)90201-v. [DOI] [PubMed] [Google Scholar]
- Hangauer D. G., Monzingo A. F., Matthews B. W. An interactive computer graphics study of thermolysin-catalyzed peptide cleavage and inhibition by N-carboxymethyl dipeptides. Biochemistry. 1984 Nov 20;23(24):5730–5741. doi: 10.1021/bi00319a011. [DOI] [PubMed] [Google Scholar]
- Ilg T., Harbecke D., Overath P. The lysosomal gp63-related protein in Leishmania mexicana amastigotes is a soluble metalloproteinase with an acidic pH optimum. FEBS Lett. 1993 Jul 19;327(1):103–107. doi: 10.1016/0014-5793(93)81049-6. [DOI] [PubMed] [Google Scholar]
- Kodama T., Freeman M., Rohrer L., Zabrecky J., Matsudaira P., Krieger M. Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature. 1990 Feb 8;343(6258):531–535. doi: 10.1038/343531a0. [DOI] [PubMed] [Google Scholar]
- Laban A., Wirth D. F. Transfection of Leishmania enriettii and expression of chloramphenicol acetyltransferase gene. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9119–9123. doi: 10.1073/pnas.86.23.9119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee M. G. An RNA polymerase II promoter in the hsp70 locus of Trypanosoma brucei. Mol Cell Biol. 1996 Mar;16(3):1220–1230. doi: 10.1128/mcb.16.3.1220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu X., Chang K. P. Extrachromosomal genetic complementation of surface metalloproteinase (gp63)-deficient Leishmania increases their binding to macrophages. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4991–4995. doi: 10.1073/pnas.89.11.4991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macdonald M. H., Morrison C. J., McMaster W. R. Analysis of the active site and activation mechanism of the Leishmania surface metalloproteinase GP63. Biochim Biophys Acta. 1995 Dec 6;1253(2):199–207. doi: 10.1016/0167-4838(95)00155-5. [DOI] [PubMed] [Google Scholar]
- McCabe M. J., Jr, Jiang S. A., Orrenius S. Chelation of intracellular zinc triggers apoptosis in mature thymocytes. Lab Invest. 1993 Jul;69(1):101–110. [PubMed] [Google Scholar]
- McGwire B. S., Chang K. P. Posttranslational regulation of a Leishmania HEXXH metalloprotease (gp63). The effects of site-specific mutagenesis of catalytic, zinc binding, N-glycosylation, and glycosyl phosphatidylinositol addition sites on N-terminal end cleavage, intracellular stability, and extracellular exit. J Biol Chem. 1996 Apr 5;271(14):7903–7909. doi: 10.1074/jbc.271.14.7903. [DOI] [PubMed] [Google Scholar]
- McGwire B., Chang K. P. Genetic rescue of surface metalloproteinase (gp63)-deficiency in Leishmania amazonensis variants increases their infection of macrophages at the early phase. Mol Biochem Parasitol. 1994 Aug;66(2):345–347. doi: 10.1016/0166-6851(94)90160-0. [DOI] [PubMed] [Google Scholar]
- McKerrow J. H., Sun E., Rosenthal P. J., Bouvier J. The proteases and pathogenicity of parasitic protozoa. Annu Rev Microbiol. 1993;47:821–853. doi: 10.1146/annurev.mi.47.100193.004133. [DOI] [PubMed] [Google Scholar]
- McMaster W. R., Morrison C. J., MacDonald M. H., Joshi P. B. Mutational and functional analysis of the Leishmania surface metalloproteinase GP63: similarities to matrix metalloproteinases. Parasitology. 1994;108 (Suppl):S29–S36. doi: 10.1017/s0031182000075697. [DOI] [PubMed] [Google Scholar]
- Medina-Acosta E., Karess R. E., Russell D. G. Structurally distinct genes for the surface protease of Leishmania mexicana are developmentally regulated. Mol Biochem Parasitol. 1993 Jan;57(1):31–45. doi: 10.1016/0166-6851(93)90241-o. [DOI] [PubMed] [Google Scholar]
- Medina-Acosta E., Karess R. E., Schwartz H., Russell D. G. The promastigote surface protease (gp63) of Leishmania is expressed but differentially processed and localized in the amastigote stage. Mol Biochem Parasitol. 1989 Dec;37(2):263–273. doi: 10.1016/0166-6851(89)90158-8. [DOI] [PubMed] [Google Scholar]
- Miller R. A., Reed S. G., Parsons M. Leishmania gp63 molecule implicated in cellular adhesion lacks an Arg-Gly-Asp sequence. Mol Biochem Parasitol. 1990 Mar;39(2):267–274. doi: 10.1016/0166-6851(90)90065-t. [DOI] [PubMed] [Google Scholar]
- Mukhopadhyay A., Chaudhuri G., Arora S. K., Sehgal S., Basu S. K. Receptor-mediated drug delivery to macrophages in chemotherapy of leishmaniasis. Science. 1989 May 12;244(4905):705–707. doi: 10.1126/science.2717947. [DOI] [PubMed] [Google Scholar]
- Mukhopadhyay A., Mukhopadhyay B., Srivastava R. K., Basu S. K. Scavenger-receptor-mediated delivery of daunomycin elicits selective toxicity towards neoplastic cells of macrophage lineage. Biochem J. 1992 May 15;284(Pt 1):237–241. doi: 10.1042/bj2840237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mukkada A. J., Meade J. C., Glaser T. A., Bonventre P. F. Enhanced metabolism of Leishmania donovani amastigotes at acid pH: an adaptation for intracellular growth. Science. 1985 Sep 13;229(4718):1099–1101. doi: 10.1126/science.4035350. [DOI] [PubMed] [Google Scholar]
- Musicki B., Behrman H. R. Metal chelators reverse the action of hydrogen peroxide in rat luteal cells. Mol Cell Endocrinol. 1993 Apr;92(2):215–220. doi: 10.1016/0303-7207(93)90011-8. [DOI] [PubMed] [Google Scholar]
- Ramamoorthy R., Swihart K. G., McCoy J. J., Wilson M. E., Donelson J. E. Intergenic regions between tandem gp63 genes influence the differential expression of gp63 RNAs in Leishmania chagasi promastigotes. J Biol Chem. 1995 May 19;270(20):12133–12139. doi: 10.1074/jbc.270.20.12133. [DOI] [PubMed] [Google Scholar]
- Roberts S. C., Swihart K. G., Agey M. W., Ramamoorthy R., Wilson M. E., Donelson J. E. Sequence diversity and organization of the msp gene family encoding gp63 of Leishmania chagasi. Mol Biochem Parasitol. 1993 Dec;62(2):157–171. doi: 10.1016/0166-6851(93)90106-8. [DOI] [PubMed] [Google Scholar]
- Roberts S. C., Wilson M. E., Donelson J. E. Developmentally regulated expression of a novel 59-kDa product of the major surface protease (Msp or gp63) gene family of Leishmania chagasi. J Biol Chem. 1995 Apr 14;270(15):8884–8892. doi: 10.1074/jbc.270.15.8884. [DOI] [PubMed] [Google Scholar]
- Russo D. M., Jardim A., Carvalho E. M., Sleath P. R., Armitage R. J., Olafson R. W., Reed S. G. Mapping human T cell epitopes in leishmania gp63. Identification of cross-reactive and species-specific epitopes. J Immunol. 1993 Feb 1;150(3):932–939. [PubMed] [Google Scholar]
- Ryan K. A., Garraway L. A., Descoteaux A., Turco S. J., Beverley S. M. Isolation of virulence genes directing surface glycosyl-phosphatidylinositol synthesis by functional complementation of Leishmania. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8609–8613. doi: 10.1073/pnas.90.18.8609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider P., Rosat J. P., Bouvier J., Louis J., Bordier C. Leishmania major: differential regulation of the surface metalloprotease in amastigote and promastigote stages. Exp Parasitol. 1992 Sep;75(2):196–206. doi: 10.1016/0014-4894(92)90179-e. [DOI] [PubMed] [Google Scholar]
- Shankar A., Mitchen T. K., Hall L. R., Turco S. J., Titus R. G. Reversion to virulence in Leishmania major correlates with expression of surface lipophosphoglycan. Mol Biochem Parasitol. 1993 Oct;61(2):207–216. doi: 10.1016/0166-6851(93)90067-8. [DOI] [PubMed] [Google Scholar]
- Shreffler W. G., Burns J. M., Jr, Badaró R., Ghalib H. W., Button L. L., McMaster W. R., Reed S. G. Antibody responses of visceral leishmaniasis patients to gp63, a major surface glycoprotein of Leishmania species. J Infect Dis. 1993 Feb;167(2):426–430. doi: 10.1093/infdis/167.2.426. [DOI] [PubMed] [Google Scholar]
- Siebert P. D., Larrick J. W. Competitive PCR. Nature. 1992 Oct 8;359(6395):557–558. doi: 10.1038/359557a0. [DOI] [PubMed] [Google Scholar]
- Siebert P. D., Larrick J. W. PCR MIMICS: competitive DNA fragments for use as internal standards in quantitative PCR. Biotechniques. 1993 Feb;14(2):244–249. [PubMed] [Google Scholar]
- Soteriadou K. P., Tzinia A. K., Panou-Pamonis E., Tsikaris V., Sakarellos-Daitsiotis M., Sakarellos C., Papapoulou Y., Matsas R. Antigenicity and conformational analysis of the Zn(2+)-binding sites of two Zn(2+)-metalloproteases: Leishmania gp63 and mammalian endopeptidase-24.11. Biochem J. 1996 Jan 15;313(Pt 2):455–466. doi: 10.1042/bj3130455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor J. D., Ackroyd A. J., Halford S. E. The gel shift assay for the analysis of DNA-protein interactions. Methods Mol Biol. 1994;30:263–279. doi: 10.1385/0-89603-256-6:263. [DOI] [PubMed] [Google Scholar]
- Turco S. J., Descoteaux A. The lipophosphoglycan of Leishmania parasites. Annu Rev Microbiol. 1992;46:65–94. doi: 10.1146/annurev.mi.46.100192.000433. [DOI] [PubMed] [Google Scholar]
- Tzinia A. K., Soteriadou K. P. Substrate-dependent pH optima of gp63 purified from seven strains of Leishmania. Mol Biochem Parasitol. 1991 Jul;47(1):83–89. doi: 10.1016/0166-6851(91)90150-5. [DOI] [PubMed] [Google Scholar]
- Webb J. R., McMaster W. R. Leishmania major HEXBP deletion mutants generated by double targeted gene replacement. Mol Biochem Parasitol. 1994 Feb;63(2):231–242. doi: 10.1016/0166-6851(94)90059-0. [DOI] [PubMed] [Google Scholar]
- Webb J. R., McMaster W. R. Molecular cloning and expression of a Leishmania major gene encoding a single-stranded DNA-binding protein containing nine "CCHC" zinc finger motifs. J Biol Chem. 1993 Jul 5;268(19):13994–14002. [PubMed] [Google Scholar]
- Wilson M. E., Paetz K. E., Ramamoorthy R., Donelson J. E. The effect of ongoing protein synthesis on the steady state levels of Gp63 RNAs in Leishmania chagasi. J Biol Chem. 1993 Jul 25;268(21):15731–15736. [PubMed] [Google Scholar]
- Xu D., McSorley S. J., Chatfield S. N., Dougan G., Liew F. Y. Protection against Leishmania major infection in genetically susceptible BALB/c mice by gp63 delivered orally in attenuated Salmonella typhimurium (AroA- AroD-). Immunology. 1995 May;85(1):1–7. [PMC free article] [PubMed] [Google Scholar]