Skip to main content
Thorax logoLink to Thorax
. 1998 Dec;53(12):1059–1062. doi: 10.1136/thx.53.12.1059

Urinary cGMP concentrations in severe primary pulmonary hypertension

M Bogdan 1, M Humbert 1, J Francoual 1, C Claise 1, P Duroux 1, G Simonneau 1, A Lindenbaum 1
PMCID: PMC1745149  PMID: 10195079

Abstract

BACKGROUND—Prognostic evaluation of patients with primary pulmonary hypertension (PPH) requires right heart catheterisation. The development of accurate non-invasive methods for monitoring these patients remains an important task. Cyclic guanosine monophosphate (cGMP) is an indicator of the action of natriuretic peptides and nitric oxide on target cells. Plasma and urinary cGMP concentrations are raised in patients with congestive heart failure in whom they correlate closely with haemodynamic parameters and disease severity. The aim of the present study was to determine whether the urinary concentration of cGMP could be used as a non-invasive marker of haemodynamic impairment in patients with severe PPH.
METHODS—Urinary cGMP concentrations were measured in 19 consecutive patients with PPH, seven with acute asthma, and 30 normal healthy controls.
RESULTS—Patients with PPH had higher urinary cGMP concentrations than asthmatic patients or normal healthy controls (p = 0.001). Urinary cGMP concentrations were higher in patients with severe haemodynamic impairment—that is, those with a cardiac index (CI) of ⩽2 l/min/m2 (p = 0.002)—and urinary cGMP concentrations were inversely correlated with CI (r = -0.69, p = 0.002) and venous oxygen saturation (r= -0.65, p = 0.003).
CONCLUSION—Urinary cGMP concentrations may represent a non-invasive indicator of the haemodynamic status of patients with severe PPH.



Full Text

The Full Text of this article is available as a PDF (97.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham W. T., Hensen J., Kim J. K., Dürr J., Lesnefsky E. J., Groves B. M., Schrier R. W. Atrial natriuretic peptide and urinary cyclic guanosine monophosphate in patients with chronic heart failure. J Am Soc Nephrol. 1992 Jun;2(12):1697–1703. doi: 10.1681/ASN.V2121697. [DOI] [PubMed] [Google Scholar]
  2. Adnot S., Andrivet P., Chabrier P. E., Piquet J., Plas P., Braquet P., Roudot-Thoraval F., Brun-Buisson C. Atrial natriuretic factor in chronic obstructive lung disease with pulmonary hypertension. Physiological correlates and response to peptide infusion. J Clin Invest. 1989 Mar;83(3):986–993. doi: 10.1172/JCI113985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Adnot S., Chabrier P. E., Andrivet P., Viossat I., Piquet J., Brun-Buisson C., Gutkowska Y., Braquet P. Atrial natriuretic peptide concentrations and pulmonary hemodynamics in patients with pulmonary artery hypertension. Am Rev Respir Dis. 1987 Oct;136(4):951–956. doi: 10.1164/ajrccm/136.4.951. [DOI] [PubMed] [Google Scholar]
  4. Barst R. J., Rubin L. J., Long W. A., McGoon M. D., Rich S., Badesch D. B., Groves B. M., Tapson V. F., Bourge R. C., Brundage B. H. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. N Engl J Med. 1996 Feb 1;334(5):296–301. doi: 10.1056/NEJM199602013340504. [DOI] [PubMed] [Google Scholar]
  5. Broadus A. E., Kaminsky N. I., Hardman J. G., Sutherland E. W., Liddle G. W. Kinetic parameters and renal clearances of plasma adenosine 3',5'-monophosphate and guanosine 3',5'-monophosphate in man. J Clin Invest. 1970 Dec;49(12):2222–2236. doi: 10.1172/JCI106441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burghuber O. C., Hartter E., Punzengruber C., Weissel M., Woloszczuk W. Human atrial natriuretic peptide secretion in precapillary pulmonary hypertension. Clinical study in patients with COPD and interstitial fibrosis. Chest. 1988 Jan;93(1):31–37. doi: 10.1378/chest.93.1.31. [DOI] [PubMed] [Google Scholar]
  7. Cowie M. R., Struthers A. D., Wood D. A., Coats A. J., Thompson S. G., Poole-Wilson P. A., Sutton G. C. Value of natriuretic peptides in assessment of patients with possible new heart failure in primary care. Lancet. 1997 Nov 8;350(9088):1349–1353. doi: 10.1016/S0140-6736(97)06031-5. [DOI] [PubMed] [Google Scholar]
  8. D'Alonzo G. E., Barst R. J., Ayres S. M., Bergofsky E. H., Brundage B. H., Detre K. M., Fishman A. P., Goldring R. M., Groves B. M., Kernis J. T. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med. 1991 Sep 1;115(5):343–349. doi: 10.7326/0003-4819-115-5-343. [DOI] [PubMed] [Google Scholar]
  9. Edwards B. S., Zimmerman R. S., Schwab T. R., Heublein D. M., Burnett J. C., Jr Atrial stretch, not pressure, is the principal determinant controlling the acute release of atrial natriuretic factor. Circ Res. 1988 Feb;62(2):191–195. doi: 10.1161/01.res.62.2.191. [DOI] [PubMed] [Google Scholar]
  10. Francoual J., Taieb J., Berkane N., Lindenbaum A., Frydman R. Urinary cGMP levels during pregnancy with and without uterine contractions. Eur J Obstet Gynecol Reprod Biol. 1995 Nov;63(1):17–19. doi: 10.1016/0301-2115(95)02223-t. [DOI] [PubMed] [Google Scholar]
  11. Hirata Y., Ishii M., Matsuoka H., Sugimoto T., Iizuka M., Uchida Y., Serizawa T., Sato H., Kohmoto O., Mochizuki T. Plasma concentrations of alpha-human atrial natriuretic polypeptide and cyclic GMP in patients with heart disease. Am Heart J. 1987 Jun;113(6):1463–1469. doi: 10.1016/0002-8703(87)90663-6. [DOI] [PubMed] [Google Scholar]
  12. Jakob G., Mair J., Vorderwinkler K. P., Judmaier G., König P., Zwierzina H., Pichler M., Puschendorf B. Clinical significance of urinary cyclic guanosine monophosphate in diagnosis of heart failure. Clin Chem. 1994 Jan;40(1):96–100. [PubMed] [Google Scholar]
  13. Kim J. K., Summer S. N., Durr J., Schrier R. W. Enzymatic and binding effects of atrial natriuretic factor in glomeruli and nephrons. Kidney Int. 1989 Mar;35(3):799–805. doi: 10.1038/ki.1989.55. [DOI] [PubMed] [Google Scholar]
  14. Mair J., Puschendorf B. Is measurement of cyclic guanosine monophosphate in plasma or urine suitable for assessing in vivo nitric oxide production? Circulation. 1998 Mar 31;97(12):1209–1210. doi: 10.1161/01.cir.97.12.1209. [DOI] [PubMed] [Google Scholar]
  15. McDonald L. J., Murad F. Nitric oxide and cyclic GMP signaling. Proc Soc Exp Biol Med. 1996 Jan;211(1):1–6. doi: 10.3181/00379727-211-43950a. [DOI] [PubMed] [Google Scholar]
  16. Morice A. H., Pepke-Zaba J., Brown M. J., Thomas P. S., Higenbottam T. W. Atrial natriuretic peptide in primary pulmonary hypertension. Eur Respir J. 1990 Sep;3(8):910–913. [PubMed] [Google Scholar]
  17. Nootens M., Kaufmann E., Rector T., Toher C., Judd D., Francis G. S., Rich S. Neurohormonal activation in patients with right ventricular failure from pulmonary hypertension: relation to hemodynamic variables and endothelin levels. J Am Coll Cardiol. 1995 Dec;26(7):1581–1585. doi: 10.1016/0735-1097(95)00399-1. [DOI] [PubMed] [Google Scholar]
  18. Reitz B. A., Wallwork J. L., Hunt S. A., Pennock J. L., Billingham M. E., Oyer P. E., Stinson E. B., Shumway N. E. Heart-lung transplantation: successful therapy for patients with pulmonary vascular disease. N Engl J Med. 1982 Mar 11;306(10):557–564. doi: 10.1056/NEJM198203113061001. [DOI] [PubMed] [Google Scholar]
  19. Rich S., Dantzker D. R., Ayres S. M., Bergofsky E. H., Brundage B. H., Detre K. M., Fishman A. P., Goldring R. M., Groves B. M., Koerner S. K. Primary pulmonary hypertension. A national prospective study. Ann Intern Med. 1987 Aug;107(2):216–223. doi: 10.7326/0003-4819-107-2-216. [DOI] [PubMed] [Google Scholar]
  20. Rich S., Kaufmann E., Levy P. S. The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension. N Engl J Med. 1992 Jul 9;327(2):76–81. doi: 10.1056/NEJM199207093270203. [DOI] [PubMed] [Google Scholar]
  21. Rubin L. J. Primary pulmonary hypertension. Chest. 1993 Jul;104(1):236–250. doi: 10.1378/chest.104.1.236. [DOI] [PubMed] [Google Scholar]
  22. Saito Y., Nakao K., Nishimura K., Sugawara A., Okumura K., Obata K., Sonoda R., Ban T., Yasue H., Imura H. Clinical application of atrial natriuretic polypeptide in patients with congestive heart failure: beneficial effects on left ventricular function. Circulation. 1987 Jul;76(1):115–124. doi: 10.1161/01.cir.76.1.115. [DOI] [PubMed] [Google Scholar]
  23. Skwarski K., Lee M., Turnbull L., MacNee W. Atrial natriuretic peptide in stable and decompensated chronic obstructive pulmonary disease. Thorax. 1993 Jul;48(7):730–735. doi: 10.1136/thx.48.7.730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vorderwinkler K. P., Artner-Dworzak E., Jakob G., Mair J., Diensti F., Pichler M., Puschendorf B. Release of cyclic guanosine monophosphate evaluated as a diagnostic tool in cardiac diseases. Clin Chem. 1991 Feb;37(2):186–190. [PubMed] [Google Scholar]
  25. Yasue H., Yoshimura M., Sumida H., Kikuta K., Kugiyama K., Jougasaki M., Ogawa H., Okumura K., Mukoyama M., Nakao K. Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation. 1994 Jul;90(1):195–203. doi: 10.1161/01.cir.90.1.195. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES