Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Dec;64(12):5269–5273. doi: 10.1128/iai.64.12.5269-5273.1996

Disruption of the SNF1 gene abolishes trehalose utilization in the pathogenic yeast Candida glabrata.

R Petter 1, K J Kwon-Chung 1
PMCID: PMC174518  PMID: 8945576

Abstract

The SNF1 gene product, a serine/threonine protein kinase, is a global regulatory protein which has been isolated from several organisms. In Saccharomyces cerevisiae the SNF1 gene product is essential for the derepression of glucose repression since snf1 strains are unable to utilize sucrose, galactose, maltose, melibiose, or nonfermentable carbohydrates. Moreover, the SNF1 gene product was suggested to interact with additional regulatory pathways and to affect the expression of multiple target genes as reflected by the pleiotropic nature of the snf1 mutation. Here we report the characterization of the SNF1 homolog of Candida glabrata, a pathogenic yeast phylogenetically related to S. cerevisiae. The carbon utilization spectrum of C. glabrata is considerably narrower than that of other pathogenic yeasts, and the majority of the strains utilize solely glucose and trehalose from among 20 of the most commonly tested carbohydrates. Disruption of the C. glabrata SNF1 homolog resulted in the loss of the ability to utilize trehalose, indicating that even in an organism with such a limited carbon utilization spectrum, the regulatory mechanism governing catabolic repression is preserved.

Full Text

The Full Text of this article is available as a PDF (268.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguan K., Scott J., See C. G., Sarkar N. H. Characterization and chromosomal localization of the human homologue of a rat AMP-activated protein kinase-encoding gene: a major regulator of lipid metabolism in mammals. Gene. 1994 Nov 18;149(2):345–350. doi: 10.1016/0378-1119(94)90174-0. [DOI] [PubMed] [Google Scholar]
  2. Alderson A., Sabelli P. A., Dickinson J. R., Cole D., Richardson M., Kreis M., Shewry P. R., Halford N. G. Complementation of snf1, a mutation affecting global regulation of carbon metabolism in yeast, by a plant protein kinase cDNA. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8602–8605. doi: 10.1073/pnas.88.19.8602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barns S. M., Lane D. J., Sogin M. L., Bibeau C., Weisburg W. G. Evolutionary relationships among pathogenic Candida species and relatives. J Bacteriol. 1991 Apr;173(7):2250–2255. doi: 10.1128/jb.173.7.2250-2255.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carling D., Aguan K., Woods A., Verhoeven A. J., Beri R. K., Brennan C. H., Sidebottom C., Davison M. D., Scott J. Mammalian AMP-activated protein kinase is homologous to yeast and plant protein kinases involved in the regulation of carbon metabolism. J Biol Chem. 1994 Apr 15;269(15):11442–11448. [PubMed] [Google Scholar]
  5. Celenza J. L., Carlson M. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science. 1986 Sep 12;233(4769):1175–1180. doi: 10.1126/science.3526554. [DOI] [PubMed] [Google Scholar]
  6. Celenza J. L., Carlson M. Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein. Mol Cell Biol. 1989 Nov;9(11):5034–5044. doi: 10.1128/mcb.9.11.5034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fujimura H., Sakuma Y. Simplified isolation of chromosomal and plasmid DNA from yeasts. Biotechniques. 1993 Apr;14(4):538–540. [PubMed] [Google Scholar]
  8. Geber A., Hitchcock C. A., Swartz J. E., Pullen F. S., Marsden K. E., Kwon-Chung K. J., Bennett J. E. Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol composition, and antifungal susceptibility. Antimicrob Agents Chemother. 1995 Dec;39(12):2708–2717. doi: 10.1128/aac.39.12.2708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gietz R. D., Schiestl R. H., Willems A. R., Woods R. A. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast. 1995 Apr 15;11(4):355–360. doi: 10.1002/yea.320110408. [DOI] [PubMed] [Google Scholar]
  10. Halford N. G., Man A. L., Barker J. H., Monger W., Shewry P. R., Smith A., Purcell P. C. Investigating the role of plant SNF1-related protein kinases. Biochem Soc Trans. 1994 Nov;22(4):953–957. doi: 10.1042/bst0220953. [DOI] [PubMed] [Google Scholar]
  11. Hannappel U., Vicente-Carbajosa J., Barker J. H., Shewry P. R., Halford N. G. Differential expression of two barley SNF1-related protein kinase genes. Plant Mol Biol. 1995 Mar;27(6):1235–1240. doi: 10.1007/BF00020898. [DOI] [PubMed] [Google Scholar]
  12. Hardie D. G., Carling D., Halford N. Roles of the Snf1/Rkin1/AMP-activated protein kinase family in the response to environmental and nutritional stress. Semin Cell Biol. 1994 Dec;5(6):409–416. doi: 10.1006/scel.1994.1048. [DOI] [PubMed] [Google Scholar]
  13. Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jarvis W. R. Epidemiology of nosocomial fungal infections, with emphasis on Candida species. Clin Infect Dis. 1995 Jun;20(6):1526–1530. doi: 10.1093/clinids/20.6.1526. [DOI] [PubMed] [Google Scholar]
  15. Kitada K., Yamaguchi E., Arisawa M. Cloning of the Candida glabrata TRP1 and HIS3 genes, and construction of their disruptant strains by sequential integrative transformation. Gene. 1995 Nov 20;165(2):203–206. doi: 10.1016/0378-1119(95)00552-h. [DOI] [PubMed] [Google Scholar]
  16. Macreadie I. G., Castelli L. A., Mehra R. K., Thorvaldsen J. L., Winge D. R. Heterologous gene expression and protein secretion from Candida glabrata. Biotechnol Appl Biochem. 1994 Jun;19(Pt 3):265–269. [PubMed] [Google Scholar]
  17. Mehra R. K., Thorvaldsen J. L., Macreadie I. G., Winge D. R. Cloning system for Candida glabrata using elements from the metallothionein-IIa-encoding gene that confer autonomous replication. Gene. 1992 Apr 1;113(1):119–124. doi: 10.1016/0378-1119(92)90678-i. [DOI] [PubMed] [Google Scholar]
  18. Muranaka T., Banno H., Machida Y. Characterization of tobacco protein kinase NPK5, a homolog of Saccharomyces cerevisiae SNF1 that constitutively activates expression of the glucose-repressible SUC2 gene for a secreted invertase of S. cerevisiae. Mol Cell Biol. 1994 May;14(5):2958–2965. doi: 10.1128/mcb.14.5.2958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ng H. C., Singh M., Jeyaseelan K. Identification of two protein serine/threonine kinase genes and molecular cloning of a SNF1 type protein kinase gene from Toxoplasma gondii. Biochem Mol Biol Int. 1995 Jan;35(1):155–165. [PubMed] [Google Scholar]
  20. Pfaller M. A. Nosocomial candidiasis: emerging species, reservoirs, and modes of transmission. Clin Infect Dis. 1996 May;22 (Suppl 2):S89–S94. doi: 10.1093/clinids/22.supplement_2.s89. [DOI] [PubMed] [Google Scholar]
  21. Shah H. C., Carlson G. P. Alteration by phenobarbital and 3-methyl-cholanthrene of functional and structural changes in rat liver due to carbon tetrachloride inhalation. J Pharmacol Exp Ther. 1975 Apr;193(1):281–292. [PubMed] [Google Scholar]
  22. Simon M., Binder M., Adam G., Hartig A., Ruis H. Control of peroxisome proliferation in Saccharomyces cerevisiae by ADR1, SNF1 (CAT1, CCR1) and SNF4 (CAT3). Yeast. 1992 Apr;8(4):303–309. doi: 10.1002/yea.320080407. [DOI] [PubMed] [Google Scholar]
  23. Strøm A. R., Kaasen I. Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol Microbiol. 1993 Apr;8(2):205–210. doi: 10.1111/j.1365-2958.1993.tb01564.x. [DOI] [PubMed] [Google Scholar]
  24. Thompson-Jaeger S., François J., Gaughran J. P., Tatchell K. Deletion of SNF1 affects the nutrient response of yeast and resembles mutations which activate the adenylate cyclase pathway. Genetics. 1991 Nov;129(3):697–706. doi: 10.1093/genetics/129.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tu J., Carlson M. REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae. EMBO J. 1995 Dec 1;14(23):5939–5946. doi: 10.1002/j.1460-2075.1995.tb00282.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tung K. S., Hopper A. K. The glucose repression and RAS-cAMP signal transduction pathways of Saccharomyces cerevisiae each affect RNA processing and the synthesis of a reporter protein. Mol Gen Genet. 1995 Apr 10;247(1):48–54. doi: 10.1007/BF00425820. [DOI] [PubMed] [Google Scholar]
  27. Varma A., Edman J. C., Kwon-Chung K. J. Molecular and genetic analysis of URA5 transformants of Cryptococcus neoformans. Infect Immun. 1992 Mar;60(3):1101–1108. doi: 10.1128/iai.60.3.1101-1108.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wingard J. R. Importance of Candida species other than C. albicans as pathogens in oncology patients. Clin Infect Dis. 1995 Jan;20(1):115–125. doi: 10.1093/clinids/20.1.115. [DOI] [PubMed] [Google Scholar]
  29. Yang X., Jiang R., Carlson M. A family of proteins containing a conserved domain that mediates interaction with the yeast SNF1 protein kinase complex. EMBO J. 1994 Dec 15;13(24):5878–5886. doi: 10.1002/j.1460-2075.1994.tb06933.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zhou P., Szczypka M. S., Young R., Thiele D. J. A system for gene cloning and manipulation in the yeast Candida glabrata. Gene. 1994 May 3;142(1):135–140. doi: 10.1016/0378-1119(94)90368-9. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES