Skip to main content
Thorax logoLink to Thorax
. 1998 May;53(5):389–397. doi: 10.1136/thx.53.5.389

The genetics of cystic fibrosis lung disease

D Davidson 1, D Porteous 1
PMCID: PMC1745224  PMID: 9708232

Full Text

The Full Text of this article is available as a PDF (161.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barasch J., Kiss B., Prince A., Saiman L., Gruenert D., al-Awqati Q. Defective acidification of intracellular organelles in cystic fibrosis. Nature. 1991 Jul 4;352(6330):70–73. doi: 10.1038/352070a0. [DOI] [PubMed] [Google Scholar]
  2. CLAIREAUX A. E. Fibrocystic disease of the pancreas in the newborn. Arch Dis Child. 1956 Feb;31(155):22–27. doi: 10.1136/adc.31.155.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carroll T. P., Morales M. M., Fulmer S. B., Allen S. S., Flotte T. R., Cutting G. R., Guggino W. B. Alternate translation initiation codons can create functional forms of cystic fibrosis transmembrane conductance regulator. J Biol Chem. 1995 May 19;270(20):11941–11946. doi: 10.1074/jbc.270.20.11941. [DOI] [PubMed] [Google Scholar]
  4. Chu C. S., Trapnell B. C., Curristin S. M., Cutting G. R., Crystal R. G. Extensive posttranscriptional deletion of the coding sequences for part of nucleotide-binding fold 1 in respiratory epithelial mRNA transcripts of the cystic fibrosis transmembrane conductance regulator gene is not associated with the clinical manifestations of cystic fibrosis. J Clin Invest. 1992 Sep;90(3):785–790. doi: 10.1172/JCI115952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Collins F. S. Cystic fibrosis: molecular biology and therapeutic implications. Science. 1992 May 8;256(5058):774–779. doi: 10.1126/science.1375392. [DOI] [PubMed] [Google Scholar]
  6. Davidson D. J., Dorin J. R., McLachlan G., Ranaldi V., Lamb D., Doherty C., Govan J., Porteous D. J. Lung disease in the cystic fibrosis mouse exposed to bacterial pathogens. Nat Genet. 1995 Apr;9(4):351–357. doi: 10.1038/ng0495-351. [DOI] [PubMed] [Google Scholar]
  7. Davies J. C., Stern M., Dewar A., Caplen N. J., Munkonge F. M., Pitt T., Sorgi F., Huang L., Bush A., Geddes D. M. CFTR gene transfer reduces the binding of Pseudomonas aeruginosa to cystic fibrosis respiratory epithelium. Am J Respir Cell Mol Biol. 1997 Jun;16(6):657–663. doi: 10.1165/ajrcmb.16.6.9191467. [DOI] [PubMed] [Google Scholar]
  8. Davis P. B., Drumm M., Konstan M. W. Cystic fibrosis. Am J Respir Crit Care Med. 1996 Nov;154(5):1229–1256. doi: 10.1164/ajrccm.154.5.8912731. [DOI] [PubMed] [Google Scholar]
  9. Delaney S. J., Wainwright B. J. New pharmaceutical approaches to the treatment of cystic fibrosis. Nat Med. 1996 Apr;2(4):392–393. doi: 10.1038/nm0496-392. [DOI] [PubMed] [Google Scholar]
  10. Devidas S., Guggino W. B. The cystic fibrosis transmembrane conductance regulator and ATP. Curr Opin Cell Biol. 1997 Aug;9(4):547–552. doi: 10.1016/s0955-0674(97)80032-4. [DOI] [PubMed] [Google Scholar]
  11. Dorin J. R., Farley R., Webb S., Smith S. N., Farini E., Delaney S. J., Wainwright B. J., Alton E. W., Porteous D. J. A demonstration using mouse models that successful gene therapy for cystic fibrosis requires only partial gene correction. Gene Ther. 1996 Sep;3(9):797–801. [PubMed] [Google Scholar]
  12. Drittanti L., Masciovecchio M. V., Gabbarini J., Vega M. Cystic fibrosis: gene therapy or preventive gene transfer? Gene Ther. 1997 Oct;4(10):1001–1003. doi: 10.1038/sj.gt.3300526. [DOI] [PubMed] [Google Scholar]
  13. Estivill X. Complexity in a monogenic disease. Nat Genet. 1996 Apr;12(4):348–350. doi: 10.1038/ng0496-348. [DOI] [PubMed] [Google Scholar]
  14. Goldman M. J., Anderson G. M., Stolzenberg E. D., Kari U. P., Zasloff M., Wilson J. M. Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell. 1997 Feb 21;88(4):553–560. doi: 10.1016/s0092-8674(00)81895-4. [DOI] [PubMed] [Google Scholar]
  15. Govan J. R., Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev. 1996 Sep;60(3):539–574. doi: 10.1128/mr.60.3.539-574.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hancock R. E. Peptide antibiotics. Lancet. 1997 Feb 8;349(9049):418–422. doi: 10.1016/S0140-6736(97)80051-7. [DOI] [PubMed] [Google Scholar]
  17. Harder J., Bartels J., Christophers E., Schröder J. M. A peptide antibiotic from human skin. Nature. 1997 Jun 26;387(6636):861–861. doi: 10.1038/43088. [DOI] [PubMed] [Google Scholar]
  18. Harris A. Towards an ovine model of cystic fibrosis. Hum Mol Genet. 1997 Dec;6(13):2191–2194. doi: 10.1093/hmg/6.13.2191. [DOI] [PubMed] [Google Scholar]
  19. Heeckeren A., Walenga R., Konstan M. W., Bonfield T., Davis P. B., Ferkol T. Excessive inflammatory response of cystic fibrosis mice to bronchopulmonary infection with Pseudomonas aeruginosa. J Clin Invest. 1997 Dec 1;100(11):2810–2815. doi: 10.1172/JCI119828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Huttner K. M., Kozak C. A., Bevins C. L. The mouse genome encodes a single homolog of the antimicrobial peptide human beta-defensin 1. FEBS Lett. 1997 Aug 11;413(1):45–49. doi: 10.1016/s0014-5793(97)00875-2. [DOI] [PubMed] [Google Scholar]
  21. Johnson L. G., Olsen J. C., Sarkadi B., Moore K. L., Swanstrom R., Boucher R. C. Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis. Nat Genet. 1992 Sep;2(1):21–25. doi: 10.1038/ng0992-21. [DOI] [PubMed] [Google Scholar]
  22. Khan T. Z., Wagener J. S., Bost T., Martinez J., Accurso F. J., Riches D. W. Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med. 1995 Apr;151(4):1075–1082. doi: 10.1164/ajrccm/151.4.1075. [DOI] [PubMed] [Google Scholar]
  23. Knowles M. R., Robinson J. M., Wood R. E., Pue C. A., Mentz W. M., Wager G. C., Gatzy J. T., Boucher R. C. Ion composition of airway surface liquid of patients with cystic fibrosis as compared with normal and disease-control subjects. J Clin Invest. 1997 Nov 15;100(10):2588–2595. doi: 10.1172/JCI119802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Li J. D., Dohrman A. F., Gallup M., Miyata S., Gum J. R., Kim Y. S., Nadel J. A., Prince A., Basbaum C. B. Transcriptional activation of mucin by Pseudomonas aeruginosa lipopolysaccharide in the pathogenesis of cystic fibrosis lung disease. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):967–972. doi: 10.1073/pnas.94.3.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mak V., Jarvi K. A., Zielenski J., Durie P., Tsui L. C. Higher proportion of intact exon 9 CFTR mRNA in nasal epithelium compared with vas deferens. Hum Mol Genet. 1997 Nov;6(12):2099–2107. doi: 10.1093/hmg/6.12.2099. [DOI] [PubMed] [Google Scholar]
  26. Oppenheimer E. H., Esterly J. R. Pathology of cystic fibrosis review of the literature and comparison with 146 autopsied cases. Perspect Pediatr Pathol. 1975;2:241–278. [PubMed] [Google Scholar]
  27. Pier G. B., Grout M., Zaidi T. S. Cystic fibrosis transmembrane conductance regulator is an epithelial cell receptor for clearance of Pseudomonas aeruginosa from the lung. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):12088–12093. doi: 10.1073/pnas.94.22.12088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pier G. B., Grout M., Zaidi T. S., Olsen J. C., Johnson L. G., Yankaskas J. R., Goldberg J. B. Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections. Science. 1996 Jan 5;271(5245):64–67. doi: 10.1126/science.271.5245.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Porteous D., Davidson D. Cystic fibrosis lung infection cleared up? Nat Med. 1997 Dec;3(12):1317–1318. doi: 10.1038/nm1297-1317. [DOI] [PubMed] [Google Scholar]
  30. Puchelle E., Jacquot J., Beck G., Zahm J. M., Galabert C. Rheological and transport properties of airway secretions in cystic fibrosis--relationships with the degree of infection and severity of the disease. Eur J Clin Invest. 1985 Dec;15(6):389–394. doi: 10.1111/j.1365-2362.1985.tb00290.x. [DOI] [PubMed] [Google Scholar]
  31. Regnis J. A., Robinson M., Bailey D. L., Cook P., Hooper P., Chan H. K., Gonda I., Bautovich G., Bye P. T. Mucociliary clearance in patients with cystic fibrosis and in normal subjects. Am J Respir Crit Care Med. 1994 Jul;150(1):66–71. doi: 10.1164/ajrccm.150.1.8025774. [DOI] [PubMed] [Google Scholar]
  32. Rozmahel R., Wilschanski M., Matin A., Plyte S., Oliver M., Auerbach W., Moore A., Forstner J., Durie P., Nadeau J. Modulation of disease severity in cystic fibrosis transmembrane conductance regulator deficient mice by a secondary genetic factor. Nat Genet. 1996 Mar;12(3):280–287. doi: 10.1038/ng0396-280. [DOI] [PubMed] [Google Scholar]
  33. Saiman L., Prince A. Pseudomonas aeruginosa pili bind to asialoGM1 which is increased on the surface of cystic fibrosis epithelial cells. J Clin Invest. 1993 Oct;92(4):1875–1880. doi: 10.1172/JCI116779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Smith J. J., Travis S. M., Greenberg E. P., Welsh M. J. Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell. 1996 Apr 19;85(2):229–236. doi: 10.1016/s0092-8674(00)81099-5. [DOI] [PubMed] [Google Scholar]
  35. Stutts M. J., Canessa C. M., Olsen J. C., Hamrick M., Cohn J. A., Rossier B. C., Boucher R. C. CFTR as a cAMP-dependent regulator of sodium channels. Science. 1995 Aug 11;269(5225):847–850. doi: 10.1126/science.7543698. [DOI] [PubMed] [Google Scholar]
  36. Yeates D. B., Sturgess J. M., Kahn S. R., Levison H., Aspin N. Mucociliary transport in trachea of patients with cystic fibrosis. Arch Dis Child. 1976 Jan;51(1):28–33. doi: 10.1136/adc.51.1.28. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zahm J. M., Gaillard D., Dupuit F., Hinnrasky J., Porteous D., Dorin J. R., Puchelle E. Early alterations in airway mucociliary clearance and inflammation of the lamina propria in CF mice. Am J Physiol. 1997 Mar;272(3 Pt 1):C853–C859. doi: 10.1152/ajpcell.1997.272.3.C853. [DOI] [PubMed] [Google Scholar]
  38. de Bentzmann S., Roger P., Dupuit F., Bajolet-Laudinat O., Fuchey C., Plotkowski M. C., Puchelle E. Asialo GM1 is a receptor for Pseudomonas aeruginosa adherence to regenerating respiratory epithelial cells. Infect Immun. 1996 May;64(5):1582–1588. doi: 10.1128/iai.64.5.1582-1588.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES