Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Dec;64(12):5326–5331. doi: 10.1128/iai.64.12.5326-5331.1996

Resistance to mycoplasmal lung disease in mice is a complex genetic trait.

S C Cartner 1, J W Simecka 1, D E Briles 1, G H Cassell 1, J R Lindsey 1
PMCID: PMC174526  PMID: 8945584

Abstract

Mouse strains differ markedly in resistance to Mycoplasma pulmonis infection, and investigation of these differences holds much promise for understanding the mechanisms of antimycoplasmal host defenses. To determine the potential genetic diversity of resistance to disease in murine respiratory mycoplasmosis (MRM) and to select disease-resistant and nonresistant mouse strains for further genetic analysis, we screened 17 inbred mouse strains of various Bcg and H-2 genotypes for resistance to M. pulmonis. Mice were inoculated intranasally with 10(4) CFU of M. pulmonis UAB CT and evaluated at 21 days postinfection for severities of the four histologic lung lesions characteristic of MRM: alveolar exudate, airway exudate, airway epithelial hyperplasia, and lymphoid infiltrate. On the basis of these assessments of MRM severity, one group of mouse strains was found to be extremely resistant to disease (C57BR/cdJ, C57BL/6NCr, C57BL/10ScNCr, and C57BL/6J). The remaining strains of mice (C57L/J, SJL/NCr, BALB/cAnNCr, A/JCr, C3H/HeJ, SWR/J, AKR/NCr, CBA/NCr, C58/J, DBA/2NCr, C3H/HeNCr, C3HeB/FeJ, and C3H/HeJCr) developed disease of widely varying severities. Furthermore, strains in the group with more disease varied in pattern of lesion severity. While the severities of all four lesions were correlated in most mouse strains, this was not always true. DBA/2NCr mice had one of the highest scores for alveolar exudate, only a moderate score for airway exudate, and significantly lower scores for both airway epithelial hyperplasia and lymphoid infiltrate than all other strains susceptible to lung disease. DBA/2NCr mice had one of the highest mortality rates. We concluded that resistance to MRM is a complex trait. The observed differences in lung disease severity could not be explained by known differences at the Bcg or H-2 locus in the strains of mice we studied.

Full Text

The Full Text of this article is available as a PDF (224.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atchley W. R., Fitch W. M. Gene trees and the origins of inbred strains of mice. Science. 1991 Oct 25;254(5031):554–558. doi: 10.1126/science.1948030. [DOI] [PubMed] [Google Scholar]
  2. Cartner S. C., Simecka J. W., Lindsey J. R., Cassell G. H., Davis J. K. Chronic respiratory mycoplasmosis in C3H/HeN and C57BL/6N mice: lesion severity and antibody response. Infect Immun. 1995 Oct;63(10):4138–4142. doi: 10.1128/iai.63.10.4138-4142.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cassell G. H. Derrick Edward Award Lecture. The pathogenic potential of mycoplasmas: Mycoplasma pulmonis as a model. Rev Infect Dis. 1982 May-Jun;4 (Suppl):S18–S34. doi: 10.1093/clinids/4.supplement_1.s18. [DOI] [PubMed] [Google Scholar]
  4. Davidson M. K., Lindsey J. R., Parker R. F., Tully J. G., Cassell G. H. Differences in virulence for mice among strains of Mycoplasma pulmonis. Infect Immun. 1988 Aug;56(8):2156–2162. doi: 10.1128/iai.56.8.2156-2162.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davis J. K., Cassell G. H. Murine respiratory mycoplasmosis in LEW and F344 rats: strain differences in lesion severity. Vet Pathol. 1982 May;19(3):280–293. doi: 10.1177/030098588201900306. [DOI] [PubMed] [Google Scholar]
  6. Davis J. K., Davidson M. K., Schoeb T. R., Lindsey J. R. Decreased intrapulmonary killing of Mycoplasma pulmonis after short-term exposure to NO2 is associated with damaged alveolar macrophages. Am Rev Respir Dis. 1992 Feb;145(2 Pt 1):406–411. doi: 10.1164/ajrccm/145.2_Pt_1.406. [DOI] [PubMed] [Google Scholar]
  7. Davis J. K., Delozier K. M., Asa D. K., Minion F. C., Cassell G. H. Interactions between murine alveolar macrophages and Mycoplasma pulmonis in vitro. Infect Immun. 1980 Aug;29(2):590–599. doi: 10.1128/iai.29.2.590-599.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davis J. K., Parker R. F., White H., Dziedzic D., Taylor G., Davidson M. K., Cox N. R., Cassell G. H. Strain differences in susceptibility to murine respiratory mycoplasmosis in C57BL/6 and C3H/HeN mice. Infect Immun. 1985 Dec;50(3):647–654. doi: 10.1128/iai.50.3.647-654.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Denny F. W., Clyde W. A., Jr, Glezen W. P. Mycoplasma pneumoniae disease: clinical spectrum, pathophysiology, epidemiology, and control. J Infect Dis. 1971 Jan;123(1):74–92. doi: 10.1093/infdis/123.1.74. [DOI] [PubMed] [Google Scholar]
  10. Denny F. W., Taylor-Robinson D., Allison A. C. The role of thymus-dependent immunity in Mycoplasma pulmonis infections of mice. J Med Microbiol. 1972 Aug;5(3):327–336. doi: 10.1099/00222615-5-3-327. [DOI] [PubMed] [Google Scholar]
  11. Evengård B., Sandstedt K., Bölske G., Feinstein R., Riesenfelt-Orn I., Smith C. I. Intranasal inoculation of Mycoplasma pulmonis in mice with severe combined immunodeficiency (SCID) causes a wasting disease with grave arthritis. Clin Exp Immunol. 1994 Dec;98(3):388–394. doi: 10.1111/j.1365-2249.1994.tb05502.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Faulkner C. B., Simecka J. W., Davidson M. K., Davis J. K., Schoeb T. R., Lindsey J. R., Everson M. P. Gene expression and production of tumor necrosis factor alpha, interleukin 1, interleukin 6, and gamma interferon in C3H/HeN and C57BL/6N mice in acute Mycoplasma pulmonis disease. Infect Immun. 1995 Oct;63(10):4084–4090. doi: 10.1128/iai.63.10.4084-4090.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fernald G. W., Collier A. M., Clyde W. A., Jr Respiratory infections due to Mycoplasma pneumoniae in infants and children. Pediatrics. 1975 Mar;55(3):327–335. [PubMed] [Google Scholar]
  14. Flournoy D. J., Jones J. B., 3rd The significance of infection as a cause of death in veterans. Mil Med. 1987 Nov;152(11):587–589. [PubMed] [Google Scholar]
  15. Foy H. M. Infections caused by Mycoplasma pneumoniae and possible carrier state in different populations of patients. Clin Infect Dis. 1993 Aug;17 (Suppl 1):S37–S46. doi: 10.1093/clinids/17.supplement_1.s37. [DOI] [PubMed] [Google Scholar]
  16. Foy H. M., Kenny G. E., Cooney M. K., Allan I. D. Long-term epidemiology of infections with Mycoplasma pneumoniae. J Infect Dis. 1979 Jun;139(6):681–687. doi: 10.1093/infdis/139.6.681. [DOI] [PubMed] [Google Scholar]
  17. Lai W. C., Bennett M., Pakes S. P., Kumar V., Steutermann D., Owusu I., Mikhael A. Resistance to Mycoplasma pulmonis mediated by activated natural killer cells. J Infect Dis. 1990 Jun;161(6):1269–1275. doi: 10.1093/infdis/161.6.1269. [DOI] [PubMed] [Google Scholar]
  18. Lai W. C., Linton G., Bennett M., Pakes S. P. Genetic control of resistance to Mycoplasma pulmonis infection in mice. Infect Immun. 1993 Nov;61(11):4615–4621. doi: 10.1128/iai.61.11.4615-4621.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lander E. S., Schork N. J. Genetic dissection of complex traits. Science. 1994 Sep 30;265(5181):2037–2048. doi: 10.1126/science.8091226. [DOI] [PubMed] [Google Scholar]
  20. Lindsey J. R., Cassell H. Experimental Mycoplasma pulmonis infection in pathogen-free mice. Models for studying mycoplasmosis of the respiratory tract. Am J Pathol. 1973 Jul;72(1):63–90. [PMC free article] [PubMed] [Google Scholar]
  21. Parker R. F., Davis J. K., Blalock D. K., Thorp R. B., Simecka J. W., Cassell G. H. Pulmonary clearance of Mycoplasma pulmonis in C57BL/6N and C3H/HeN mice. Infect Immun. 1987 Nov;55(11):2631–2635. doi: 10.1128/iai.55.11.2631-2635.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Parker R. F., Davis J. K., Cassell G. H., White H., Dziedzic D., Blalock D. K., Thorp R. B., Simecka J. W. Short-term exposure to nitrogen dioxide enhances susceptibility to murine respiratory mycoplasmosis and decreases intrapulmonary killing of Mycoplasma pulmonis. Am Rev Respir Dis. 1989 Aug;140(2):502–512. doi: 10.1164/ajrccm/140.2.502. [DOI] [PubMed] [Google Scholar]
  23. Pinson D. M., Schoeb T. R., Lindsey J. R., Davis J. K. Evaluation by scoring and computerized morphometry of lesions of early Mycoplasma pulmonis infection and ammonia exposure in F344/N rats. Vet Pathol. 1986 Sep;23(5):550–555. doi: 10.1177/030098588602300502. [DOI] [PubMed] [Google Scholar]
  24. Roifman C. M., Rao C. P., Lederman H. M., Lavi S., Quinn P., Gelfand E. W. Increased susceptibility to Mycoplasma infection in patients with hypogammaglobulinemia. Am J Med. 1986 Apr;80(4):590–594. doi: 10.1016/0002-9343(86)90812-0. [DOI] [PubMed] [Google Scholar]
  25. Skamene E., Pietrangeli C. E. Genetics of the immune response to infectious pathogens. Curr Opin Immunol. 1991 Aug;3(4):511–517. doi: 10.1016/0952-7915(91)90013-q. [DOI] [PubMed] [Google Scholar]
  26. Skamene E. The Bcg gene story. Immunobiology. 1994 Oct;191(4-5):451–460. doi: 10.1016/S0171-2985(11)80451-1. [DOI] [PubMed] [Google Scholar]
  27. Taylor G., Howard C. J. Protection of mice against Mycoplasma pulmonis infection using purified mouse immunoglobulins: comparison between protective effect and biological properties of immunoglobulin classes. Immunology. 1981 Jul;43(3):519–525. [PMC free article] [PubMed] [Google Scholar]
  28. Vidal S. M., Malo D., Vogan K., Skamene E., Gros P. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell. 1993 May 7;73(3):469–485. doi: 10.1016/0092-8674(93)90135-d. [DOI] [PubMed] [Google Scholar]
  29. Webster A. D., Furr P. M., Hughes-Jones N. C., Gorick B. D., Taylor-Robinson D. Critical dependence on antibody for defence against mycoplasmas. Clin Exp Immunol. 1988 Mar;71(3):383–387. [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES