Skip to main content
Thorax logoLink to Thorax
. 1998 Sep;53(9):793–797. doi: 10.1136/thx.53.9.793

Genetics of drug resistant tuberculosis

A Telenti 1
PMCID: PMC1745329  PMID: 10319064

Full Text

The Full Text of this article is available as a PDF (110.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alangaden G. J., Lerner S. A. The clinical use of fluoroquinolones for the treatment of mycobacterial diseases. Clin Infect Dis. 1997 Nov;25(5):1213–1221. doi: 10.1086/516116. [DOI] [PubMed] [Google Scholar]
  2. Alcaide F., Pfyffer G. E., Telenti A. Role of embB in natural and acquired resistance to ethambutol in mycobacteria. Antimicrob Agents Chemother. 1997 Oct;41(10):2270–2273. doi: 10.1128/aac.41.10.2270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Banerjee A., Dubnau E., Quemard A., Balasubramanian V., Um K. S., Wilson T., Collins D., de Lisle G., Jacobs W. R., Jr inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science. 1994 Jan 14;263(5144):227–230. doi: 10.1126/science.8284673. [DOI] [PubMed] [Google Scholar]
  4. Barbachyn M. R., Hutchinson D. K., Brickner S. J., Cynamon M. H., Kilburn J. O., Klemens S. P., Glickman S. E., Grega K. C., Hendges S. K., Toops D. S. Identification of a novel oxazolidinone (U-100480) with potent antimycobacterial activity. J Med Chem. 1996 Feb 2;39(3):680–685. doi: 10.1021/jm950956y. [DOI] [PubMed] [Google Scholar]
  5. Belanger A. E., Besra G. S., Ford M. E., Mikusová K., Belisle J. T., Brennan P. J., Inamine J. M. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11919–11924. doi: 10.1073/pnas.93.21.11919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bodmer T., Zürcher G., Imboden P., Telenti A. Mutation position and type of substitution in the beta-subunit of the RNA polymerase influence in-vitro activity of rifamycins in rifampicin-resistant Mycobacterium tuberculosis. J Antimicrob Chemother. 1995 Feb;35(2):345–348. doi: 10.1093/jac/35.2.345. [DOI] [PubMed] [Google Scholar]
  7. Cambau E., Sougakoff W., Besson M., Truffot-Pernot C., Grosset J., Jarlier V. Selection of a gyrA mutant of Mycobacterium tuberculosis resistant to fluoroquinolones during treatment with ofloxacin. J Infect Dis. 1994 Aug;170(2):479–483. doi: 10.1093/infdis/170.2.479. [DOI] [PubMed] [Google Scholar]
  8. Chambers H. F., Kocagöz T., Sipit T., Turner J., Hopewell P. C. Activity of amoxicillin/clavulanate in patients with tuberculosis. Clin Infect Dis. 1998 Apr;26(4):874–877. doi: 10.1086/513945. [DOI] [PubMed] [Google Scholar]
  9. Cohn D. L., Bustreo F., Raviglione M. C. Drug-resistant tuberculosis: review of the worldwide situation and the WHO/IUATLD Global Surveillance Project. International Union Against Tuberculosis and Lung Disease. Clin Infect Dis. 1997 Jan;24 (Suppl 1):S121–S130. doi: 10.1093/clinids/24.supplement_1.s121. [DOI] [PubMed] [Google Scholar]
  10. Cole S. T. Rifamycin resistance in mycobacteria. Res Microbiol. 1996 Jan-Feb;147(1-2):48–52. doi: 10.1016/0923-2508(96)80203-8. [DOI] [PubMed] [Google Scholar]
  11. Cole S. T. Why sequence the genome of Mycobacterium tuberculosis? Tuber Lung Dis. 1996 Dec;77(6):486–490. doi: 10.1016/s0962-8479(96)90044-1. [DOI] [PubMed] [Google Scholar]
  12. Condos R., Rom W. N., Schluger N. W. Treatment of multidrug-resistant pulmonary tuberculosis with interferon-gamma via aerosol. Lancet. 1997 May 24;349(9064):1513–1515. doi: 10.1016/S0140-6736(96)12273-X. [DOI] [PubMed] [Google Scholar]
  13. Dabbs E. R., Yazawa K., Mikami Y., Miyaji M., Morisaki N., Iwasaki S., Furihata K. Ribosylation by mycobacterial strains as a new mechanism of rifampin inactivation. Antimicrob Agents Chemother. 1995 Apr;39(4):1007–1009. doi: 10.1128/aac.39.4.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Deretic V., Philipp W., Dhandayuthapani S., Mudd M. H., Curcic R., Garbe T., Heym B., Via L. E., Cole S. T. Mycobacterium tuberculosis is a natural mutant with an inactivated oxidative-stress regulatory gene: implications for sensitivity to isoniazid. Mol Microbiol. 1995 Sep;17(5):889–900. doi: 10.1111/j.1365-2958.1995.mmi_17050889.x. [DOI] [PubMed] [Google Scholar]
  15. Dessen A., Quémard A., Blanchard J. S., Jacobs W. R., Jr, Sacchettini J. C. Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science. 1995 Mar 17;267(5204):1638–1641. doi: 10.1126/science.7886450. [DOI] [PubMed] [Google Scholar]
  16. Ferrero L., Cameron B., Crouzet J. Analysis of gyrA and grlA mutations in stepwise-selected ciprofloxacin-resistant mutants of Staphylococcus aureus. Antimicrob Agents Chemother. 1995 Jul;39(7):1554–1558. doi: 10.1128/aac.39.7.1554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Finken M., Kirschner P., Meier A., Wrede A., Böttger E. C. Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol Microbiol. 1993 Sep;9(6):1239–1246. doi: 10.1111/j.1365-2958.1993.tb01253.x. [DOI] [PubMed] [Google Scholar]
  18. Guerrero C., Stockman L., Marchesi F., Bodmer T., Roberts G. D., Telenti A. Evaluation of the rpoB gene in rifampicin-susceptible and -resistant Mycobacterium avium and Mycobacterium intracellulare. J Antimicrob Chemother. 1994 Mar;33(3):661–663. doi: 10.1093/jac/33.3.661-a. [DOI] [PubMed] [Google Scholar]
  19. Heym B., Alzari P. M., Honoré N., Cole S. T. Missense mutations in the catalase-peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis. Mol Microbiol. 1995 Jan;15(2):235–245. doi: 10.1111/j.1365-2958.1995.tb02238.x. [DOI] [PubMed] [Google Scholar]
  20. Heym B., Honoré N., Truffot-Pernot C., Banerjee A., Schurra C., Jacobs W. R., Jr, van Embden J. D., Grosset J. H., Cole S. T. Implications of multidrug resistance for the future of short-course chemotherapy of tuberculosis: a molecular study. Lancet. 1994 Jul 30;344(8918):293–298. doi: 10.1016/s0140-6736(94)91338-2. [DOI] [PubMed] [Google Scholar]
  21. Holland S. M., Eisenstein E. M., Kuhns D. B., Turner M. L., Fleisher T. A., Strober W., Gallin J. I. Treatment of refractory disseminated nontuberculous mycobacterial infection with interferon gamma. A preliminary report. N Engl J Med. 1994 May 12;330(19):1348–1355. doi: 10.1056/NEJM199405123301904. [DOI] [PubMed] [Google Scholar]
  22. Honoré N., Cole S. T. Streptomycin resistance in mycobacteria. Antimicrob Agents Chemother. 1994 Feb;38(2):238–242. doi: 10.1128/aac.38.2.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Johnson J. D., Hand W. L., Francis J. B., King-Thompson N., Corwin R. W. Antibiotic uptake by alveolar macrophages. J Lab Clin Med. 1980 Mar;95(3):429–439. [PubMed] [Google Scholar]
  24. Jouanguy E., Altare F., Lamhamedi S., Revy P., Emile J. F., Newport M., Levin M., Blanche S., Seboun E., Fischer A. Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guérin infection. N Engl J Med. 1996 Dec 26;335(26):1956–1961. doi: 10.1056/NEJM199612263352604. [DOI] [PubMed] [Google Scholar]
  25. Khoo K. H., Douglas E., Azadi P., Inamine J. M., Besra G. S., Mikusová K., Brennan P. J., Chatterjee D. Truncated structural variants of lipoarabinomannan in ethambutol drug-resistant strains of Mycobacterium smegmatis. Inhibition of arabinan biosynthesis by ethambutol. J Biol Chem. 1996 Nov 8;271(45):28682–28690. doi: 10.1074/jbc.271.45.28682. [DOI] [PubMed] [Google Scholar]
  26. Kocagöz T., Hackbarth C. J., Unsal I., Rosenberg E. Y., Nikaido H., Chambers H. F. Gyrase mutations in laboratory-selected, fluoroquinolone-resistant mutants of Mycobacterium tuberculosis H37Ra. Antimicrob Agents Chemother. 1996 Aug;40(8):1768–1774. doi: 10.1128/aac.40.8.1768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kwon H. H., Tomioka H., Saito H. Distribution and characterization of beta-lactamases of mycobacteria and related organisms. Tuber Lung Dis. 1995 Apr;76(2):141–148. doi: 10.1016/0962-8479(95)90557-x. [DOI] [PubMed] [Google Scholar]
  28. Lincoln E. M. Epidemics of tuberculosis. Bibl Tuberc. 1965;21:157–201. [PubMed] [Google Scholar]
  29. Lipshutz R. J., Morris D., Chee M., Hubbell E., Kozal M. J., Shah N., Shen N., Yang R., Fodor S. P. Using oligonucleotide probe arrays to access genetic diversity. Biotechniques. 1995 Sep;19(3):442–447. [PubMed] [Google Scholar]
  30. Mdluli K., Slayden R. A., Zhu Y., Ramaswamy S., Pan X., Mead D., Crane D. D., Musser J. M., Barry C. E., 3rd Inhibition of a Mycobacterium tuberculosis beta-ketoacyl ACP synthase by isoniazid. Science. 1998 Jun 5;280(5369):1607–1610. doi: 10.1126/science.280.5369.1607. [DOI] [PubMed] [Google Scholar]
  31. Mdluli K., Swanson J., Fischer E., Lee R. E., Barry C. E., 3rd Mechanisms involved in the intrinsic isoniazid resistance of Mycobacterium avium. Mol Microbiol. 1998 Mar;27(6):1223–1233. doi: 10.1046/j.1365-2958.1998.00774.x. [DOI] [PubMed] [Google Scholar]
  32. Meier A., Sander P., Schaper K. J., Scholz M., Böttger E. C. Correlation of molecular resistance mechanisms and phenotypic resistance levels in streptomycin-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1996 Nov;40(11):2452–2454. doi: 10.1128/aac.40.11.2452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Miesel L., Weisbrod T. R., Marcinkeviciene J. A., Bittman R., Jacobs W. R., Jr NADH dehydrogenase defects confer isoniazid resistance and conditional lethality in Mycobacterium smegmatis. J Bacteriol. 1998 May;180(9):2459–2467. doi: 10.1128/jb.180.9.2459-2467.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Moghazeh S. L., Pan X., Arain T., Stover C. K., Musser J. M., Kreiswirth B. N. Comparative antimycobacterial activities of rifampin, rifapentine, and KRM-1648 against a collection of rifampin-resistant Mycobacterium tuberculosis isolates with known rpoB mutations. Antimicrob Agents Chemother. 1996 Nov;40(11):2655–2657. doi: 10.1128/aac.40.11.2655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Mor N., Esfandiari A. Synergistic activities of clarithromycin and pyrazinamide against Mycobacterium tuberculosis in human macrophages. Antimicrob Agents Chemother. 1997 Sep;41(9):2035–2036. doi: 10.1128/aac.41.9.2035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Newport M. J., Huxley C. M., Huston S., Hawrylowicz C. M., Oostra B. A., Williamson R., Levin M. A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N Engl J Med. 1996 Dec 26;335(26):1941–1949. doi: 10.1056/NEJM199612263352602. [DOI] [PubMed] [Google Scholar]
  37. Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science. 1994 Apr 15;264(5157):382–388. doi: 10.1126/science.8153625. [DOI] [PubMed] [Google Scholar]
  38. Ordway D. J., Sonnenberg M. G., Donahue S. A., Belisle J. T., Orme I. M. Drug-resistant strains of Mycobacterium tuberculosis exhibit a range of virulence for mice. Infect Immun. 1995 Feb;63(2):741–743. doi: 10.1128/iai.63.2.741-743.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Pablos-Méndez A., Raviglione M. C., Laszlo A., Binkin N., Rieder H. L., Bustreo F., Cohn D. L., Lambregts-van Weezenbeek C. S., Kim S. J., Chaulet P. Global surveillance for antituberculosis-drug resistance, 1994-1997. World Health Organization-International Union against Tuberculosis and Lung Disease Working Group on Anti-Tuberculosis Drug Resistance Surveillance. N Engl J Med. 1998 Jun 4;338(23):1641–1649. doi: 10.1056/NEJM199806043382301. [DOI] [PubMed] [Google Scholar]
  40. Quan S., Venter H., Dabbs E. R. Ribosylative inactivation of rifampin by Mycobacterium smegmatis is a principal contributor to its low susceptibility to this antibiotic. Antimicrob Agents Chemother. 1997 Nov;41(11):2456–2460. doi: 10.1128/aac.41.11.2456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rastogi N., Goh K. S., David H. L. Enhancement of drug susceptibility of Mycobacterium avium by inhibitors of cell envelope synthesis. Antimicrob Agents Chemother. 1990 May;34(5):759–764. doi: 10.1128/aac.34.5.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Reves R., Blakey D., Snider D. E., Jr, Farer L. S. Transmission of multiple drug-resistant tuberculosis: report of a school and community outbreak. Am J Epidemiol. 1981 Apr;113(4):423–435. doi: 10.1093/oxfordjournals.aje.a113110. [DOI] [PubMed] [Google Scholar]
  43. Rozwarski D. A., Grant G. A., Barton D. H., Jacobs W. R., Jr, Sacchettini J. C. Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science. 1998 Jan 2;279(5347):98–102. doi: 10.1126/science.279.5347.98. [DOI] [PubMed] [Google Scholar]
  44. Sacchettini J. C., Blanchard J. S. The structure and function of the isoniazid target in M. tuberculosis. Res Microbiol. 1996 Jan-Feb;147(1-2):36–43. doi: 10.1016/0923-2508(96)80201-4. [DOI] [PubMed] [Google Scholar]
  45. Scorpio A., Lindholm-Levy P., Heifets L., Gilman R., Siddiqi S., Cynamon M., Zhang Y. Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1997 Mar;41(3):540–543. doi: 10.1128/aac.41.3.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Scorpio A., Zhang Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med. 1996 Jun;2(6):662–667. doi: 10.1038/nm0696-662. [DOI] [PubMed] [Google Scholar]
  47. Slayden R. A., Lee R. E., Armour J. W., Cooper A. M., Orme I. M., Brennan P. J., Besra G. S. Antimycobacterial action of thiolactomycin: an inhibitor of fatty acid and mycolic acid synthesis. Antimicrob Agents Chemother. 1996 Dec;40(12):2813–2819. doi: 10.1128/aac.40.12.2813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Sreevatsan S., Pan X., Zhang Y., Deretic V., Musser J. M. Analysis of the oxyR-ahpC region in isoniazid-resistant and -susceptible Mycobacterium tuberculosis complex organisms recovered from diseased humans and animals in diverse localities. Antimicrob Agents Chemother. 1997 Mar;41(3):600–606. doi: 10.1128/aac.41.3.600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Sreevatsan S., Pan X., Zhang Y., Kreiswirth B. N., Musser J. M. Mutations associated with pyrazinamide resistance in pncA of Mycobacterium tuberculosis complex organisms. Antimicrob Agents Chemother. 1997 Mar;41(3):636–640. doi: 10.1128/aac.41.3.636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sreevatsan S., Stockbauer K. E., Pan X., Kreiswirth B. N., Moghazeh S. L., Jacobs W. R., Jr, Telenti A., Musser J. M. Ethambutol resistance in Mycobacterium tuberculosis: critical role of embB mutations. Antimicrob Agents Chemother. 1997 Aug;41(8):1677–1681. doi: 10.1128/aac.41.8.1677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Takiff H. E., Cimino M., Musso M. C., Weisbrod T., Martinez R., Delgado M. B., Salazar L., Bloom B. R., Jacobs W. R., Jr Efflux pump of the proton antiporter family confers low-level fluoroquinolone resistance in Mycobacterium smegmatis. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):362–366. doi: 10.1073/pnas.93.1.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Takiff H. E., Salazar L., Guerrero C., Philipp W., Huang W. M., Kreiswirth B., Cole S. T., Jacobs W. R., Jr, Telenti A. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob Agents Chemother. 1994 Apr;38(4):773–780. doi: 10.1128/aac.38.4.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Telenti A., Honoré N., Bernasconi C., March J., Ortega A., Heym B., Takiff H. E., Cole S. T. Genotypic assessment of isoniazid and rifampin resistance in Mycobacterium tuberculosis: a blind study at reference laboratory level. J Clin Microbiol. 1997 Mar;35(3):719–723. doi: 10.1128/jcm.35.3.719-723.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Telenti A., Imboden P., Marchesi F., Lowrie D., Cole S., Colston M. J., Matter L., Schopfer K., Bodmer T. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993 Mar 13;341(8846):647–650. doi: 10.1016/0140-6736(93)90417-f. [DOI] [PubMed] [Google Scholar]
  55. Telzak E. E., Sepkowitz K., Alpert P., Mannheimer S., Medard F., el-Sadr W., Blum S., Gagliardi A., Salomon N., Turett G. Multidrug-resistant tuberculosis in patients without HIV infection. N Engl J Med. 1995 Oct 5;333(14):907–911. doi: 10.1056/NEJM199510053331404. [DOI] [PubMed] [Google Scholar]
  56. Williams D. L., Waguespack C., Eisenach K., Crawford J. T., Portaels F., Salfinger M., Nolan C. M., Abe C., Sticht-Groh V., Gillis T. P. Characterization of rifampin-resistance in pathogenic mycobacteria. Antimicrob Agents Chemother. 1994 Oct;38(10):2380–2386. doi: 10.1128/aac.38.10.2380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Wilson T. M., Collins D. M. ahpC, a gene involved in isoniazid resistance of the Mycobacterium tuberculosis complex. Mol Microbiol. 1996 Mar;19(5):1025–1034. doi: 10.1046/j.1365-2958.1996.449980.x. [DOI] [PubMed] [Google Scholar]
  58. Wilson T. M., de Lisle G. W., Collins D. M. Effect of inhA and katG on isoniazid resistance and virulence of Mycobacterium bovis. Mol Microbiol. 1995 Mar;15(6):1009–1015. doi: 10.1111/j.1365-2958.1995.tb02276.x. [DOI] [PubMed] [Google Scholar]
  59. Zurenko G. E., Yagi B. H., Schaadt R. D., Allison J. W., Kilburn J. O., Glickman S. E., Hutchinson D. K., Barbachyn M. R., Brickner S. J. In vitro activities of U-100592 and U-100766, novel oxazolidinone antibacterial agents. Antimicrob Agents Chemother. 1996 Apr;40(4):839–845. doi: 10.1128/aac.40.4.839. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES