Skip to main content
Thorax logoLink to Thorax
. 1999 Oct;54(10):917–920. doi: 10.1136/thx.54.10.917

Increased carbon monoxide in exhaled air of patients with cystic fibrosis

P Paredi 1, P Shah 1, P Montuschi 1, P Sullivan 1, M Hodson 1, S Kharitonov 1, P Barnes 1
PMCID: PMC1745371  PMID: 10491455

Abstract

BACKGROUND—Inflammation, oxidative stress, and recurrent pulmonary infections are major aggravating factors in cystic fibrosis. Nitric oxide (NO), a marker of inflammation, is not increased, however, probably because it is metabolised to peroxynitrite. Exhaled carbon monoxide (CO), a product of heme degradation by heme oxygenase 1 (HO-1) which is induced by inflammatory cytokines and oxidants, was therefore tested as a non-invasive marker of airway inflammation and oxidative stress.
METHODS—Exhaled CO and NO concentrations were measured in 29 patients (15 men) with cystic fibrosis of mean (SD) age 25 (1) years, forced expiratory volume in one second (FEV1) 43 (6)%, 14 of whom were receiving steroid treatment.
RESULTS—The concentration of exhaled CO was higher in patients with cystic fibrosis (6.7 (0.6) ppm) than in 15 healthy subjects (eight men) aged 31 (3) years (2.4 (0.4) ppm, mean difference 4.3 (95% CI 2.3 to 6.1), p<0.001). Patients not receiving steroid treatment had higher CO levels (8.4 (1.0) ppm) than treated patients (5.1(0.5) ppm, mean difference 3.3 (95% CI -5.7 to -0.9), p<0.01). Normal subjects had higher NO levels (6.8 (0.4) ppb) than patients with cystic fibrosis (3.2 (0.2) ppb, mean difference 3.8 (95% CI 2.6 to 4.9), p<0.05) and were not influenced by steroid treatment (3.8 (0.4) ppb and 2.7 (0.3) ppb for treated and untreated patients, respectively, mean difference 0.8 (95% CI -0.6 to 2.3), p>0.05). Patients homozygous for the ΔF508 CFTR mutation had higher CO and NO concentrations than heterozygous patients (CO: 7.7 (1.8) ppm and 4.0 (0.6) ppm, respectively, mean difference 3.7 (95% CI -7.1 to -0.3), p<0.05; NO: 4.1 (0.5) ppb and 1.9 (0.7) ppb, respectively, mean difference 2.2 (95% CI -3.7 to -0.6), p<0.05).
CONCLUSIONS—High exhaled CO concentrations in patients with cystic fibrosis may reflect induction of HO-1. Measurement of exhaled CO concentrations may be clinically useful in the management and monitoring of oxidation and inflammatory mediated lung injury.



Full Text

The Full Text of this article is available as a PDF (80.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Applegate L. A., Luscher P., Tyrrell R. M. Induction of heme oxygenase: a general response to oxidant stress in cultured mammalian cells. Cancer Res. 1991 Feb 1;51(3):974–978. [PubMed] [Google Scholar]
  2. Balfour-Lynn I. M., Laverty A., Dinwiddie R. Reduced upper airway nitric oxide in cystic fibrosis. Arch Dis Child. 1996 Oct;75(4):319–322. doi: 10.1136/adc.75.4.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barnes P. J. Anti-inflammatory therapy for asthma. Annu Rev Med. 1993;44:229–242. doi: 10.1146/annurev.me.44.020193.001305. [DOI] [PubMed] [Google Scholar]
  4. Barnes P. J., Liew F. Y. Nitric oxide and asthmatic inflammation. Immunol Today. 1995 Mar;16(3):128–130. doi: 10.1016/0167-5699(95)80128-6. [DOI] [PubMed] [Google Scholar]
  5. Bonfield T. L., Panuska J. R., Konstan M. W., Hilliard K. A., Hilliard J. B., Ghnaim H., Berger M. Inflammatory cytokines in cystic fibrosis lungs. Am J Respir Crit Care Med. 1995 Dec;152(6 Pt 1):2111–2118. doi: 10.1164/ajrccm.152.6.8520783. [DOI] [PubMed] [Google Scholar]
  6. Bye A. M., Muller D. P., Wilson J., Wright V. M., Mearns M. B. Symptomatic vitamin E deficiency in cystic fibrosis. Arch Dis Child. 1985 Feb;60(2):162–164. doi: 10.1136/adc.60.2.162-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cantoni L., Rossi C., Rizzardini M., Gadina M., Ghezzi P. Interleukin-1 and tumour necrosis factor induce hepatic haem oxygenase. Feedback regulation by glucocorticoids. Biochem J. 1991 Nov 1;279(Pt 3):891–894. doi: 10.1042/bj2790891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Choi A. M., Alam J. Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am J Respir Cell Mol Biol. 1996 Jul;15(1):9–19. doi: 10.1165/ajrcmb.15.1.8679227. [DOI] [PubMed] [Google Scholar]
  9. Durante W., Kroll M. H., Christodoulides N., Peyton K. J., Schafer A. I. Nitric oxide induces heme oxygenase-1 gene expression and carbon monoxide production in vascular smooth muscle cells. Circ Res. 1997 Apr;80(4):557–564. doi: 10.1161/01.res.80.4.557. [DOI] [PubMed] [Google Scholar]
  10. Dötsch J., Demirakça S., Terbrack H. G., Hüls G., Rascher W., Kühl P. G. Airway nitric oxide in asthmatic children and patients with cystic fibrosis. Eur Respir J. 1996 Dec;9(12):2537–2540. doi: 10.1183/09031936.96.09122537. [DOI] [PubMed] [Google Scholar]
  11. Ehrhardt P., Miller M. G., Littlewood J. M. Iron deficiency in cystic fibrosis. Arch Dis Child. 1987 Feb;62(2):185–187. doi: 10.1136/adc.62.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fukushima T., Okinaga S., Sekizawa K., Ohrui T., Yamaya M., Sasaki H. The role of carbon monoxide in lucigenin-dependent chemiluminescence of rat alveolar macrophages. Eur J Pharmacol. 1995 Mar 15;289(1):103–107. doi: 10.1016/0922-4106(95)90174-4. [DOI] [PubMed] [Google Scholar]
  13. Grasemann H., Ioannidis I., Tomkiewicz R. P., de Groot H., Rubin B. K., Ratjen F. Nitric oxide metabolites in cystic fibrosis lung disease. Arch Dis Child. 1998 Jan;78(1):49–53. doi: 10.1136/adc.78.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ho L. P., Innes J. A., Greening A. P. Nitrite levels in breath condensate of patients with cystic fibrosis is elevated in contrast to exhaled nitric oxide. Thorax. 1998 Aug;53(8):680–684. doi: 10.1136/thx.53.8.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hull J., Vervaart P., Grimwood K., Phelan P. Pulmonary oxidative stress response in young children with cystic fibrosis. Thorax. 1997 Jun;52(6):557–560. doi: 10.1136/thx.52.6.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Inoue H., Aizawa H., Fukuyama S., Takata S., Matsumoto K., Shigyo M., Koto H., Hara N. Effect of inhaled glucocorticoid on the cellular profile and cytokine levels in induced sputum from asthmatic patients. Lung. 1999;177(1):53–62. doi: 10.1007/pl00007627. [DOI] [PubMed] [Google Scholar]
  17. Keyse S. M., Applegate L. A., Tromvoukis Y., Tyrrell R. M. Oxidant stress leads to transcriptional activation of the human heme oxygenase gene in cultured skin fibroblasts. Mol Cell Biol. 1990 Sep;10(9):4967–4969. doi: 10.1128/mcb.10.9.4967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Khan T. Z., Wagener J. S., Bost T., Martinez J., Accurso F. J., Riches D. W. Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med. 1995 Apr;151(4):1075–1082. doi: 10.1164/ajrccm/151.4.1075. [DOI] [PubMed] [Google Scholar]
  19. Kharitonov S. A., Chung K. F., Evans D., O'Connor B. J., Barnes P. J. Increased exhaled nitric oxide in asthma is mainly derived from the lower respiratory tract. Am J Respir Crit Care Med. 1996 Jun;153(6 Pt 1):1773–1780. doi: 10.1164/ajrccm.153.6.8665033. [DOI] [PubMed] [Google Scholar]
  20. Kharitonov S. A., O'Connor B. J., Evans D. J., Barnes P. J. Allergen-induced late asthmatic reactions are associated with elevation of exhaled nitric oxide. Am J Respir Crit Care Med. 1995 Jun;151(6):1894–1899. doi: 10.1164/ajrccm.151.6.7767537. [DOI] [PubMed] [Google Scholar]
  21. Kharitonov S. A., Wells A. U., O'Connor B. J., Cole P. J., Hansell D. M., Logan-Sinclair R. B., Barnes P. J. Elevated levels of exhaled nitric oxide in bronchiectasis. Am J Respir Crit Care Med. 1995 Jun;151(6):1889–1893. doi: 10.1164/ajrccm.151.6.7767536. [DOI] [PubMed] [Google Scholar]
  22. Kharitonov S. A., Yates D., Robbins R. A., Logan-Sinclair R., Shinebourne E. A., Barnes P. J. Increased nitric oxide in exhaled air of asthmatic patients. Lancet. 1994 Jan 15;343(8890):133–135. doi: 10.1016/s0140-6736(94)90931-8. [DOI] [PubMed] [Google Scholar]
  23. Kharitonov S., Alving K., Barnes P. J. Exhaled and nasal nitric oxide measurements: recommendations. The European Respiratory Society Task Force. Eur Respir J. 1997 Jul;10(7):1683–1693. doi: 10.1183/09031936.97.10071683. [DOI] [PubMed] [Google Scholar]
  24. Kim Y. M., Bergonia H. A., Müller C., Pitt B. R., Watkins W. D., Lancaster J. R., Jr Loss and degradation of enzyme-bound heme induced by cellular nitric oxide synthesis. J Biol Chem. 1995 Mar 17;270(11):5710–5713. doi: 10.1074/jbc.270.11.5710. [DOI] [PubMed] [Google Scholar]
  25. Klatt P., Schmidt K., Mayer B. Brain nitric oxide synthase is a haemoprotein. Biochem J. 1992 Nov 15;288(Pt 1):15–17. doi: 10.1042/bj2880015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lavrovsky Y., Drummond G. S., Abraham N. G. Downregulation of the human heme oxygenase gene by glucocorticoids and identification of 56b regulatory elements. Biochem Biophys Res Commun. 1996 Jan 26;218(3):759–765. doi: 10.1006/bbrc.1996.0135. [DOI] [PubMed] [Google Scholar]
  27. Lundberg J. O., Nordvall S. L., Weitzberg E., Kollberg H., Alving K. Exhaled nitric oxide in paediatric asthma and cystic fibrosis. Arch Dis Child. 1996 Oct;75(4):323–326. doi: 10.1136/adc.75.4.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Marumo T., Schini-Kerth V. B., Brandes R. P., Busse R. Glucocorticoids inhibit superoxide anion production and p22 phox mRNA expression in human aortic smooth muscle cells. Hypertension. 1998 Dec;32(6):1083–1088. doi: 10.1161/01.hyp.32.6.1083. [DOI] [PubMed] [Google Scholar]
  29. Meng Q. H., Springall D. R., Bishop A. E., Morgan K., Evans T. J., Habib S., Gruenert D. C., Gyi K. M., Hodson M. E., Yacoub M. H. Lack of inducible nitric oxide synthase in bronchial epithelium: a possible mechanism of susceptibility to infection in cystic fibrosis. J Pathol. 1998 Mar;184(3):323–331. doi: 10.1002/(SICI)1096-9896(199803)184:3<323::AID-PATH2>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  30. Nath K. A., Balla G., Vercellotti G. M., Balla J., Jacob H. S., Levitt M. D., Rosenberg M. E. Induction of heme oxygenase is a rapid, protective response in rhabdomyolysis in the rat. J Clin Invest. 1992 Jul;90(1):267–270. doi: 10.1172/JCI115847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nathan C., Xie Q. W. Regulation of biosynthesis of nitric oxide. J Biol Chem. 1994 May 13;269(19):13725–13728. [PubMed] [Google Scholar]
  32. Otterbein L., Sylvester S. L., Choi A. M. Hemoglobin provides protection against lethal endotoxemia in rats: the role of heme oxygenase-1. Am J Respir Cell Mol Biol. 1995 Nov;13(5):595–601. doi: 10.1165/ajrcmb.13.5.7576696. [DOI] [PubMed] [Google Scholar]
  33. Portal B. C., Richard M. J., Faure H. S., Hadjian A. J., Favier A. E. Altered antioxidant status and increased lipid peroxidation in children with cystic fibrosis. Am J Clin Nutr. 1995 Apr;61(4):843–847. doi: 10.1093/ajcn/61.4.843. [DOI] [PubMed] [Google Scholar]
  34. Reisman J., Petrou C., Corey M., Stringer D., Durie P., Levison H. Hypoalbuminemia at initial examination in patients with cystic fibrosis. J Pediatr. 1989 Nov;115(5 Pt 1):755–758. doi: 10.1016/s0022-3476(89)80657-2. [DOI] [PubMed] [Google Scholar]
  35. Roum J. H., Buhl R., McElvaney N. G., Borok Z., Crystal R. G. Systemic deficiency of glutathione in cystic fibrosis. J Appl Physiol (1985) 1993 Dec;75(6):2419–2424. doi: 10.1152/jappl.1993.75.6.2419. [DOI] [PubMed] [Google Scholar]
  36. Schlesinger M. J. How the cell copes with stress and the function of heat shock proteins. Pediatr Res. 1994 Jul;36(1 Pt 1):1–6. doi: 10.1203/00006450-199407001-00001. [DOI] [PubMed] [Google Scholar]
  37. Welsh M. J., Smith A. E. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell. 1993 Jul 2;73(7):1251–1254. doi: 10.1016/0092-8674(93)90353-r. [DOI] [PubMed] [Google Scholar]
  38. Wilmott R. W., Kassab J. T., Kilian P. L., Benjamin W. R., Douglas S. D., Wood R. E. Increased levels of interleukin-1 in bronchoalveolar washings from children with bacterial pulmonary infections. Am Rev Respir Dis. 1990 Aug;142(2):365–368. doi: 10.1164/ajrccm/142.2.365. [DOI] [PubMed] [Google Scholar]
  39. Witko-Sarsat V., Delacourt C., Rabier D., Bardet J., Nguyen A. T., Descamps-Latscha B. Neutrophil-derived long-lived oxidants in cystic fibrosis sputum. Am J Respir Crit Care Med. 1995 Dec;152(6 Pt 1):1910–1916. doi: 10.1164/ajrccm.152.6.8520754. [DOI] [PubMed] [Google Scholar]
  40. Worlitzsch D., Herberth G., Ulrich M., Döring G. Catalase, myeloperoxidase and hydrogen peroxide in cystic fibrosis. Eur Respir J. 1998 Feb;11(2):377–383. doi: 10.1183/09031936.98.11020377. [DOI] [PubMed] [Google Scholar]
  41. von Ruecker A. A., Bertele R., Harms H. K. Calcium metabolism and cystic fibrosis: mitochondrial abnormalities suggest a modification of the mitochondrial membrane. Pediatr Res. 1984 Jul;18(7):594–599. doi: 10.1203/00006450-198407000-00005. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES