Abstract
BACKGROUND—In order to study the impact on the lung function of patients with cystic fibrosis of the avidity of antipseudomonal antibodies, the avidity of antibodies against the chromosomal β-lactamase of Pseudomonas aeruginosa (aβab) and against the 60-65 kDa heat shock protein of P aeruginosa (anti-GroEL) were measured in serum samples collected longitudinally during chronic infection with P aeruginosa from a group of patients with poor and good lung function. METHODS—The thiocyanate elution method in which the molarity of potassium thiocyanate required to elute 50% bound antibody under conditions of antigen excess in ELISA was used to measure the relative avidity. RESULTS—All patients developed increasing levels of aβab and anti-GroEL antibodies during the follow up period but no maturation of the avidity of these antibodies was observed. In patients with good lung function the avidity of aβab was higher than in patients with poor lung function (p = 0.018). No significant difference in the avidity of the anti-GroEL antibodies was observed between the two groups of patients. CONCLUSION—In patients with cystic fibrosis a high avidity of aβab could contribute to a more efficient inhibition of the β-lactamase by these antibodies, resulting in the better lung function seen in this group. The immunopathological implication of the failure in avidity maturation of antibodies in chronic infection is discussed.
Full Text
The Full Text of this article is available as a PDF (136.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bruderer U., Cryz S. J., Jr, Schaad U. B., Deusinger M., Que J. U., Lang A. B. Affinity constants of naturally acquired and vaccine-induced anti-Pseudomonas aeruginosa antibodies in healthy adults and cystic fibrosis patients. J Infect Dis. 1992 Aug;166(2):344–349. doi: 10.1093/infdis/166.2.344. [DOI] [PubMed] [Google Scholar]
- Ciofu O., Giwercman B., Walter-Rasmussen J., Pressler T., Pedersen S. S., Høiby N. Antibodies against Pseudomonas aeruginosa chromosomal beta-lactamase inpatients with cystic fibrosis are markers of the development of resistance of P. aeruginosa to beta-lactams. J Antimicrob Chemother. 1995 Feb;35(2):295–304. doi: 10.1093/jac/35.2.295. [DOI] [PubMed] [Google Scholar]
- Devey M. E., Beckman S., Kemeny D. M. The functional affinities of antibodies of different IgG subclasses to dietary antigens in mothers and their babies. Clin Exp Immunol. 1993 Oct;94(1):117–121. doi: 10.1111/j.1365-2249.1993.tb05987.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devey M. E., Bleasdale-Barr K. M., Bird P., Amlot P. L. Antibodies of different human IgG subclasses show distinct patterns of affinity maturation after immunization with keyhole limpet haemocyanin. Immunology. 1990 Jun;70(2):168–174. [PMC free article] [PubMed] [Google Scholar]
- Devey M. E., Bleasdale K., Stanley C., Steward M. W. Failure of affinity maturation leads to increased susceptibility to immune complex glomerulonephritis. Immunology. 1984 Jun;52(2):377–383. [PMC free article] [PubMed] [Google Scholar]
- Eichler I., Joris L., Hsu Y. P., Van Wye J., Bram R., Moss R. Nonopsonic antibodies in cystic fibrosis. Pseudomonas aeruginosa lipopolysaccharide-specific immunoglobulin G antibodies from infected patient sera inhibit neutrophil oxidative responses. J Clin Invest. 1989 Dec;84(6):1794–1804. doi: 10.1172/JCI114364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fick R. B., Jr, Naegel G. P., Matthay R. A., Reynolds H. Y. Cystic fibrosis pseudomonas opsonins. Inhibitory nature in an in vitro phagocytic assay. J Clin Invest. 1981 Oct;68(4):899–914. doi: 10.1172/JCI110345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giwercman B., Lambert P. A., Rosdahl V. T., Shand G. H., Høiby N. Rapid emergence of resistance in Pseudomonas aeruginosa in cystic fibrosis patients due to in-vivo selection of stable partially derepressed beta-lactamase producing strains. J Antimicrob Chemother. 1990 Aug;26(2):247–259. doi: 10.1093/jac/26.2.247. [DOI] [PubMed] [Google Scholar]
- Høiby N., Döring G., Schiøtz P. O. The role of immune complexes in the pathogenesis of bacterial infections. Annu Rev Microbiol. 1986;40:29–53. doi: 10.1146/annurev.mi.40.100186.000333. [DOI] [PubMed] [Google Scholar]
- Jensen T., Pedersen S. S., Høiby N., Koch C., Flensborg E. W. Use of antibiotics in cystic fibrosis. The Danish approach. Antibiot Chemother (1971) 1989;42:237–246. [PubMed] [Google Scholar]
- Lang A. B., Schaad U. B., Rüdeberg A., Wedgwood J., Que J. U., Fürer E., Cryz S. J., Jr Effect of high-affinity anti-Pseudomonas aeruginosa lipopolysaccharide antibodies induced by immunization on the rate of Pseudomonas aeruginosa infection in patients with cystic fibrosis. J Pediatr. 1995 Nov;127(5):711–717. doi: 10.1016/s0022-3476(95)70158-3. [DOI] [PubMed] [Google Scholar]
- McCloskey N., Turner M. W., Steffner P., Owens R., Goldblatt D. Human constant regions influence the antibody binding characteristics of mouse-human chimeric IgG subclasses. Immunology. 1996 Jun;88(2):169–173. doi: 10.1111/j.1365-2567.1996.tb00001.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moss R. B., Lewiston N. J. Immune complexes and humoral response to Pseudomonas aeruginosa in cystic fibrosis. Am Rev Respir Dis. 1980 Jan;121(1):23–29. doi: 10.1164/arrd.1980.121.1.23. [DOI] [PubMed] [Google Scholar]
- Petersen T. D., Ciofu O., Pressler T., Giwercman B., Pedersen S. S., Høiby N. Quantitative analysis of the IgG and IgG subclass immune responses to chromosomal Pseudomonas aeruginosa beta-lactamase in serum from patients with cystic fibrosis by western blotting and laser scanning densitometry. Thorax. 1996 Jul;51(7):733–738. doi: 10.1136/thx.51.7.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pier G. B., Grout M., Desjardins D. Complement deposition by antibodies to Pseudomonas aeruginosa mucoid exopolysaccharide (MEP) and by non-MEP specific opsonins. J Immunol. 1991 Sep 15;147(6):1869–1876. [PubMed] [Google Scholar]
- Pressler T., Jensen E. T., Espersen F., Pedersen S. S., Høiby N., Koch C. Correlation between specific IgG subclass antibodies to Pseudomonas aeruginosa and opsonic activity in serum from patients with cystic fibrosis. Pediatr Pulmonol. 1994 Jan;17(1):31–40. doi: 10.1002/ppul.1950170107. [DOI] [PubMed] [Google Scholar]
- Pullen G. R., Fitzgerald M. G., Hosking C. S. Antibody avidity determination by ELISA using thiocyanate elution. J Immunol Methods. 1986 Jan 22;86(1):83–87. doi: 10.1016/0022-1759(86)90268-1. [DOI] [PubMed] [Google Scholar]
- Schaad U. B., Lang A. B., Wedgwood J., Buehlamnn U., Fuerer E. Serotype-specific serum IgG antibodies to lipopolysaccharides of Pseudomonas aeruginosa in cystic fibrosis: correlation to disease, subclass distribution, and experimental protective capacity. Pediatr Res. 1990 May;27(5):508–513. doi: 10.1203/00006450-199005000-00019. [DOI] [PubMed] [Google Scholar]
- Thomassen M. J., Demko C. A., Wood R. E., Tandler B., Dearborn D. G., Boxerbaum B., Kuchenbrod P. J. Ultrastructure and function of alveolar macrophages from cystic fibrosis patients. Pediatr Res. 1980 May;14(5):715–721. doi: 10.1203/00006450-198005000-00003. [DOI] [PubMed] [Google Scholar]