Skip to main content
Thorax logoLink to Thorax
. 1999 Jul;54(7):572–575. doi: 10.1136/thx.54.7.572

Increased exhaled nitric oxide in patients with stable chronic obstructive pulmonary disease

M Corradi 1, M Majori 1, G C Cacciani 1, G F Consigli 1, E de'Munari 1, A Pesci 1
PMCID: PMC1745512  PMID: 10377199

Abstract

BACKGROUND—Nitric oxide (NO) plays an important role as an inflammatory mediator in the airways. Since chronic obstructive pulmonary disease (COPD) is characterised by airway inflammation, a study was undertaken to determine NO levels in the exhaled air of patients with COPD.
METHODS—Two groups of patients with clinically stable COPD were studied, 10 current smokers and 10 ex-smokers. Two control groups of healthy subjects consisting of 10 current smokers and 20 non-smokers were also studied. Exhaled NO levels were measured by the collection bag technique and NO chemiluminescence analyser.
RESULTS—Mean (SE) levels of exhaled NO in ex-smokers and current smokers with COPD (25.7 (3.0) ppb and 10.2 (1.4) ppb, respectively) were significantly higher than in non-smoker and current smoker control subjects (9.4 (0.8) ppb and 4.6 (0.4) ppb, respectively). In current smokers with COPD exhaled levels of NO were significantly lower than in ex-smokers. In this latter group of patients there was a significant negative correlation between smoking history (pack years) and levels of exhaled NO (r = -0.8, p = 0.002). A positive correlation was seen between forced expiratory volume in one second (FEV1) and levels of exhaled NO (r = 0.65, p = 0.001) in patients with COPD.
CONCLUSIONS—These data show that exhaled NO is increased in patients with stable COPD, both current and ex-smokers, compared with healthy control subjects.



Full Text

The Full Text of this article is available as a PDF (110.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alving K., Weitzberg E., Lundberg J. M. Increased amount of nitric oxide in exhaled air of asthmatics. Eur Respir J. 1993 Oct;6(9):1368–1370. [PubMed] [Google Scholar]
  2. Barnes P. J., Belvisi M. G. Nitric oxide and lung disease. Thorax. 1993 Oct;48(10):1034–1043. doi: 10.1136/thx.48.10.1034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barnes P. J., Kharitonov S. A. Exhaled nitric oxide: a new lung function test. Thorax. 1996 Mar;51(3):233–237. doi: 10.1136/thx.51.3.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barnes P. J., Liew F. Y. Nitric oxide and asthmatic inflammation. Immunol Today. 1995 Mar;16(3):128–130. doi: 10.1016/0167-5699(95)80128-6. [DOI] [PubMed] [Google Scholar]
  5. Gaston B., Drazen J. M., Loscalzo J., Stamler J. S. The biology of nitrogen oxides in the airways. Am J Respir Crit Care Med. 1994 Feb;149(2 Pt 1):538–551. doi: 10.1164/ajrccm.149.2.7508323. [DOI] [PubMed] [Google Scholar]
  6. Gustafsson L. E., Leone A. M., Persson M. G., Wiklund N. P., Moncada S. Endogenous nitric oxide is present in the exhaled air of rabbits, guinea pigs and humans. Biochem Biophys Res Commun. 1991 Dec 16;181(2):852–857. doi: 10.1016/0006-291x(91)91268-h. [DOI] [PubMed] [Google Scholar]
  7. Kanazawa H., Shoji S., Hirata K., Kurthara N., Yoshikawa J. Role of endogenous nitric oxide in airflow obstruction in smokers. Chest. 1996 Oct;110(4):927–929. doi: 10.1378/chest.110.4.927. [DOI] [PubMed] [Google Scholar]
  8. Kharitonov S. A., Robbins R. A., Yates D., Keatings V., Barnes P. J. Acute and chronic effects of cigarette smoking on exhaled nitric oxide. Am J Respir Crit Care Med. 1995 Aug;152(2):609–612. doi: 10.1164/ajrccm.152.2.7543345. [DOI] [PubMed] [Google Scholar]
  9. Kharitonov S. A., Wells A. U., O'Connor B. J., Cole P. J., Hansell D. M., Logan-Sinclair R. B., Barnes P. J. Elevated levels of exhaled nitric oxide in bronchiectasis. Am J Respir Crit Care Med. 1995 Jun;151(6):1889–1893. doi: 10.1164/ajrccm.151.6.7767536. [DOI] [PubMed] [Google Scholar]
  10. Kharitonov S. A., Yates D. H., Barnes P. J. Inhaled glucocorticoids decrease nitric oxide in exhaled air of asthmatic patients. Am J Respir Crit Care Med. 1996 Jan;153(1):454–457. doi: 10.1164/ajrccm.153.1.8542158. [DOI] [PubMed] [Google Scholar]
  11. Kharitonov S., Alving K., Barnes P. J. Exhaled and nasal nitric oxide measurements: recommendations. The European Respiratory Society Task Force. Eur Respir J. 1997 Jul;10(7):1683–1693. doi: 10.1183/09031936.97.10071683. [DOI] [PubMed] [Google Scholar]
  12. Maziak W., Loukides S., Culpitt S., Sullivan P., Kharitonov S. A., Barnes P. J. Exhaled nitric oxide in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998 Mar;157(3 Pt 1):998–1002. doi: 10.1164/ajrccm.157.3.97-05009. [DOI] [PubMed] [Google Scholar]
  13. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  14. Mullen J. B., Wright J. L., Wiggs B. R., Pare P. D., Hogg J. C. Reassessment of inflammation of airways in chronic bronchitis. Br Med J (Clin Res Ed) 1985 Nov 2;291(6504):1235–1239. doi: 10.1136/bmj.291.6504.1235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Persson M. G., Friberg S. G., Gustafsson L. E., Hedqvist P. The promotion of patent airways and inhibition of antigen-induced bronchial obstruction by endogenous nitric oxide. Br J Pharmacol. 1995 Dec;116(7):2957–2962. doi: 10.1111/j.1476-5381.1995.tb15950.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Robbins R. A., Floreani A. A., Von Essen S. G., Sisson J. H., Hill G. E., Rubinstein I., Townley R. G. Measurement of exhaled nitric oxide by three different techniques. Am J Respir Crit Care Med. 1996 May;153(5):1631–1635. doi: 10.1164/ajrccm.153.5.8630613. [DOI] [PubMed] [Google Scholar]
  17. Saetta M., Ghezzo H., Kim W. D., King M., Angus G. E., Wang N. S., Cosio M. G. Loss of alveolar attachments in smokers. A morphometric correlate of lung function impairment. Am Rev Respir Dis. 1985 Oct;132(4):894–900. doi: 10.1164/arrd.1985.132.4.894. [DOI] [PubMed] [Google Scholar]
  18. Stănescu D., Sanna A., Veriter C., Kostianev S., Calcagni P. G., Fabbri L. M., Maestrelli P. Airways obstruction, chronic expectoration, and rapid decline of FEV1 in smokers are associated with increased levels of sputum neutrophils. Thorax. 1996 Mar;51(3):267–271. doi: 10.1136/thx.51.3.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Thompson A. B., Daughton D., Robbins R. A., Ghafouri M. A., Oehlerking M., Rennard S. I. Intraluminal airway inflammation in chronic bronchitis. Characterization and correlation with clinical parameters. Am Rev Respir Dis. 1989 Dec;140(6):1527–1537. doi: 10.1164/ajrccm/140.6.1527. [DOI] [PubMed] [Google Scholar]
  20. Tsujino I., Miyamoto K., Nishimura M., Shinano H., Makita H., Saito S., Nakano T., Kawakami Y. Production of nitric oxide (NO) in intrathoracic airways of normal humans. Am J Respir Crit Care Med. 1996 Nov;154(5):1370–1374. doi: 10.1164/ajrccm.154.5.8912750. [DOI] [PubMed] [Google Scholar]
  21. Yates D. H., Kharitonov S. A., Barnes P. J. Effect of short- and long-acting inhaled beta2-agonists on exhaled nitric oxide in asthmatic patients. Eur Respir J. 1997 Jul;10(7):1483–1488. doi: 10.1183/09031936.97.10071483. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES