Skip to main content
Thorax logoLink to Thorax
. 1999 Jul;54(7):590–596. doi: 10.1136/thx.54.7.590

Immunohistochemical localisation of the matrix metalloproteinases MMP-3 and MMP-9 within the airways in asthma

B Dahlen 1, J Shute 1, P Howarth 1
PMCID: PMC1745517  PMID: 10377203

Abstract

BACKGROUND—The matrix metalloproteinase (MMP) enzymes MMP-3 and MMP-9 have relevance to the chronic structural airway changes in asthma. These proteinases can be generated by structural and inflammatory cells, and have the ability to degrade proteoglycans and thus potentially enhance airway fibrosis and smooth muscle proliferation through their ability to release and activate latent matrix bound growth factors.
METHODS—Immunostaining for MMP-3 and MMP-9 as well as for mast cells, eosinophils, and neutrophils was undertaken in acetone fixed and glycolmethacrylate embedded endobronchial biopsy specimens obtained by fibreoptic bronchoscopy under local anaesthesia. The findings from 17 asthmatic subjects (nine with mild to moderate non-steroid treated asthma and eight with chronic persistent steroid-dependent asthma) were compared with those from eight healthy controls. The cell associated MMP immunoreactivity was co-localised to mast cells, eosinophils, or neutrophils and represented as cells/mm2, based on the area of the biopsy specimen. Extracellular matrix immunoreactivity was assessed by an image analysis system and visually with ranking and the two approaches were compared.
RESULTS—The biopsy specimens from asthmatic subjects contained significantly more eosinophils (p<0.001) than those from the non-asthmatic subjects. Both MMP-9 and MMP-3 immunoreactivity could be identified in endobronchial biopsy specimens. Gelatinase B (MMP-9) immunoreactivity was prominent within the extracellular matrix as well as exhibiting distinct cell immunoreactivity which predominantly co-localised to neutrophils. Stromelysin (MMP-3) was co-localised to mast cells, eosinophils, and neutrophils as well as being present in the epithelium, the lamina reticularis and, to a lesser extent, the extracellular matrix. There was no significant difference in the extent of matrix immunoreactivity for either MMP-3 or MMP-9 between healthy controls or subjects with mild or severe asthma.
CONCLUSION—Although immunostaining cannot distinguish between active and inactive forms of MMPs, the presence of MMP-3 and MMP-9 within endobronchial biopsy specimens, the co-localisation to inflammatory cells of relevance to asthma (mast cells and eosinophils), and the identification of matrix binding, indicative of MMP-matrix interactions, points to the potential for disease related changes in MMP release that influence airway remodelling in asthma.



Full Text

The Full Text of this article is available as a PDF (182.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan J. A., Docherty A. J., Barker P. J., Huskisson N. S., Reynolds J. J., Murphy G. Binding of gelatinases A and B to type-I collagen and other matrix components. Biochem J. 1995 Jul 1;309(Pt 1):299–306. doi: 10.1042/bj3090299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birkedal-Hansen H., Moore W. G., Bodden M. K., Windsor L. J., Birkedal-Hansen B., DeCarlo A., Engler J. A. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med. 1993;4(2):197–250. doi: 10.1177/10454411930040020401. [DOI] [PubMed] [Google Scholar]
  3. Bland J. M., Altman D. G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986 Feb 8;1(8476):307–310. [PubMed] [Google Scholar]
  4. Borregaard N., Sehested M., Nielsen B. S., Sengeløv H., Kjeldsen L. Biosynthesis of granule proteins in normal human bone marrow cells. Gelatinase is a marker of terminal neutrophil differentiation. Blood. 1995 Feb 1;85(3):812–817. [PubMed] [Google Scholar]
  5. Bradding P., Feather I. H., Wilson S., Bardin P. G., Heusser C. H., Holgate S. T., Howarth P. H. Immunolocalization of cytokines in the nasal mucosa of normal and perennial rhinitic subjects. The mast cell as a source of IL-4, IL-5, and IL-6 in human allergic mucosal inflammation. J Immunol. 1993 Oct 1;151(7):3853–3865. [PubMed] [Google Scholar]
  6. Bradding P., Roberts J. A., Britten K. M., Montefort S., Djukanovic R., Mueller R., Heusser C. H., Howarth P. H., Holgate S. T. Interleukin-4, -5, and -6 and tumor necrosis factor-alpha in normal and asthmatic airways: evidence for the human mast cell as a source of these cytokines. Am J Respir Cell Mol Biol. 1994 May;10(5):471–480. doi: 10.1165/ajrcmb.10.5.8179909. [DOI] [PubMed] [Google Scholar]
  7. Britten K. M., Howarth P. H., Roche W. R. Immunohistochemistry on resin sections: a comparison of resin embedding techniques for small mucosal biopsies. Biotech Histochem. 1993 Sep;68(5):271–280. doi: 10.3109/10520299309105629. [DOI] [PubMed] [Google Scholar]
  8. Chai H., Farr R. S., Froehlich L. A., Mathison D. A., McLean J. A., Rosenthal R. R., Sheffer A. L., Spector S. L., Townley R. G. Standardization of bronchial inhalation challenge procedures. J Allergy Clin Immunol. 1975 Oct;56(4):323–327. doi: 10.1016/0091-6749(75)90107-4. [DOI] [PubMed] [Google Scholar]
  9. Delclaux C., Delacourt C., D'Ortho M. P., Boyer V., Lafuma C., Harf A. Role of gelatinase B and elastase in human polymorphonuclear neutrophil migration across basement membrane. Am J Respir Cell Mol Biol. 1996 Mar;14(3):288–295. doi: 10.1165/ajrcmb.14.3.8845180. [DOI] [PubMed] [Google Scholar]
  10. Djukanović R., Wilson J. W., Lai C. K., Holgate S. T., Howarth P. H. The safety aspects of fiberoptic bronchoscopy, bronchoalveolar lavage, and endobronchial biopsy in asthma. Am Rev Respir Dis. 1991 Apr;143(4 Pt 1):772–777. doi: 10.1164/ajrccm/143.4_Pt_1.772. [DOI] [PubMed] [Google Scholar]
  11. Gearing A. J., Beckett P., Christodoulou M., Churchill M., Clements J., Davidson A. H., Drummond A. H., Galloway W. A., Gilbert R., Gordon J. L. Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature. 1994 Aug 18;370(6490):555–557. doi: 10.1038/370555a0. [DOI] [PubMed] [Google Scholar]
  12. Goetzl E. J., Banda M. J., Leppert D. Matrix metalloproteinases in immunity. J Immunol. 1996 Jan 1;156(1):1–4. [PubMed] [Google Scholar]
  13. Mautino G., Oliver N., Chanez P., Bousquet J., Capony F. Increased release of matrix metalloproteinase-9 in bronchoalveolar lavage fluid and by alveolar macrophages of asthmatics. Am J Respir Cell Mol Biol. 1997 Nov;17(5):583–591. doi: 10.1165/ajrcmb.17.5.2562. [DOI] [PubMed] [Google Scholar]
  14. Murphy G., Cockett M. I., Ward R. V., Docherty A. J. Matrix metalloproteinase degradation of elastin, type IV collagen and proteoglycan. A quantitative comparison of the activities of 95 kDa and 72 kDa gelatinases, stromelysins-1 and -2 and punctuated metalloproteinase (PUMP). Biochem J. 1991 Jul 1;277(Pt 1):277–279. doi: 10.1042/bj2770277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ogata Y., Enghild J. J., Nagase H. Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix metalloproteinase 9. J Biol Chem. 1992 Feb 25;267(6):3581–3584. [PubMed] [Google Scholar]
  16. Ohno I., Ohtani H., Nitta Y., Suzuki J., Hoshi H., Honma M., Isoyama S., Tanno Y., Tamura G., Yamauchi K. Eosinophils as a source of matrix metalloproteinase-9 in asthmatic airway inflammation. Am J Respir Cell Mol Biol. 1997 Mar;16(3):212–219. doi: 10.1165/ajrcmb.16.3.9070604. [DOI] [PubMed] [Google Scholar]
  17. Okada S., Kita H., George T. J., Gleich G. J., Leiferman K. M. Migration of eosinophils through basement membrane components in vitro: role of matrix metalloproteinase-9. Am J Respir Cell Mol Biol. 1997 Oct;17(4):519–528. doi: 10.1165/ajrcmb.17.4.2877. [DOI] [PubMed] [Google Scholar]
  18. Peat J. K., Woolcock A. J., Cullen K. Rate of decline of lung function in subjects with asthma. Eur J Respir Dis. 1987 Mar;70(3):171–179. [PubMed] [Google Scholar]
  19. Roche W. R., Beasley R., Williams J. H., Holgate S. T. Subepithelial fibrosis in the bronchi of asthmatics. Lancet. 1989 Mar 11;1(8637):520–524. doi: 10.1016/s0140-6736(89)90067-6. [DOI] [PubMed] [Google Scholar]
  20. Sengeløv H., Follin P., Kjeldsen L., Lollike K., Dahlgren C., Borregaard N. Mobilization of granules and secretory vesicles during in vivo exudation of human neutrophils. J Immunol. 1995 Apr 15;154(8):4157–4165. [PubMed] [Google Scholar]
  21. Shute J. K., Parmar J., Holgate S. T., Howarth P. H. Urinary glycosaminoglycan levels are increased in acute severe asthma--a role for eosinophil-derived gelatinase B? Int Arch Allergy Immunol. 1997 May-Jul;113(1-3):366–367. doi: 10.1159/000237604. [DOI] [PubMed] [Google Scholar]
  22. Ståhle-Bäckdahl M., Inoue M., Guidice G. J., Parks W. C. 92-kD gelatinase is produced by eosinophils at the site of blister formation in bullous pemphigoid and cleaves the extracellular domain of recombinant 180-kD bullous pemphigoid autoantigen. J Clin Invest. 1994 May;93(5):2022–2030. doi: 10.1172/JCI117196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ulrik C. S., Backer V., Dirksen A. A 10 year follow up of 180 adults with bronchial asthma: factors important for the decline in lung function. Thorax. 1992 Jan;47(1):14–18. doi: 10.1136/thx.47.1.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Whitelock J. M., Murdoch A. D., Iozzo R. V., Underwood P. A. The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem. 1996 Apr 26;271(17):10079–10086. doi: 10.1074/jbc.271.17.10079. [DOI] [PubMed] [Google Scholar]
  25. Wiggs B. R., Bosken C., Paré P. D., James A., Hogg J. C. A model of airway narrowing in asthma and in chronic obstructive pulmonary disease. Am Rev Respir Dis. 1992 Jun;145(6):1251–1258. doi: 10.1164/ajrccm/145.6.1251. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES