Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Jan;65(1):55–63. doi: 10.1128/iai.65.1.55-63.1997

Evaluation of recombinant transferrin-binding protein B variants from Neisseria meningitidis for their ability to induce cross-reactive and bactericidal antibodies against a genetically diverse collection of serogroup B strains.

B Rokbi 1, M Mignon 1, G Maitre-Wilmotte 1, L Lissolo 1, B Danve 1, D A Caugant 1, M J Quentin-Millet 1
PMCID: PMC174556  PMID: 8975892

Abstract

Transferrin-binding protein B (TbpB) is a surface-exposed protein, variable among strains of Neisseria meningitidis, that has been considered as a vaccine candidate. To define a TbpB molecule that would give rise to broadly cross-reactive antibodies with TbpB of many strains, specific antisera were produced against three recombinant TbpB variants from strain M982: one corresponding to the full-length TbpB; one in which stretches of amino acids located in the central part of the molecule, described as hypervariable, have been deleted; and one corresponding to the N-terminal half of the molecule, described as the human transferrin binding domain. The reactivity of these antisera against 58 serogroup B strains with a 2.1-kb tbpB gene representing different genotypes, serotypes, and subtypes and different geographic origins was tested on intact meningococcal cells. In parallel, the bactericidal activity of the antisera was evaluated against 15 of the 58 strains studied. Of the 58 strains, 56 (98%) reacted with the antiserum specific for the N-terminal half of TbpB M982; this antiserum was bactericidal against 9 of 15 strains (60%). On the other hand, 43 of 58 strains reacted with the antiserum raised to full-length TbpB while 12 of 15 (80%) were killed with this antiserum. The antiserum specific to TbpB deleted of its central domain gave intermediate results, with 53 of 58 strains (91.3%) recognized and 10 of 15 (66.6%) killed. These results indicate that the N-terminal half of TbpB was sufficient to induce cross-reactive antibodies reacting with the protein on meningococcal cells but that the presence of the C-terminal half of the protein is necessary for the induction of cross-bactericidal antibodies.

Full Text

The Full Text of this article is available as a PDF (291.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ala'Aldeen D. A., Borriello S. P. The meningococcal transferrin-binding proteins 1 and 2 are both surface exposed and generate bactericidal antibodies capable of killing homologous and heterologous strains. Vaccine. 1996 Jan;14(1):49–53. doi: 10.1016/0264-410x(95)00136-o. [DOI] [PubMed] [Google Scholar]
  2. Ala'Aldeen D. A., Powell N. B., Wall R. A., Borriello S. P. Localization of the meningococcal receptors for human transferrin. Infect Immun. 1993 Feb;61(2):751–759. doi: 10.1128/iai.61.2.751-759.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ala'Aldeen D. A., Stevenson P., Griffiths E., Gorringe A. R., Irons L. I., Robinson A., Hyde S., Borriello S. P. Immune responses in humans and animals to meningococcal transferrin-binding proteins: implications for vaccine design. Infect Immun. 1994 Jul;62(7):2984–2990. doi: 10.1128/iai.62.7.2984-2990.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ala'Aldeen D. A. Transferrin receptors of Neisseria meningitidis: promising candidates for a broadly cross-protective vaccine. J Med Microbiol. 1996 Apr;44(4):237–243. doi: 10.1099/00222615-44-4-237. [DOI] [PubMed] [Google Scholar]
  5. Anderson J. E., Sparling P. F., Cornelissen C. N. Gonococcal transferrin-binding protein 2 facilitates but is not essential for transferrin utilization. J Bacteriol. 1994 Jun;176(11):3162–3170. doi: 10.1128/jb.176.11.3162-3170.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Banerjee-Bhatnagar N., Frasch C. E. Expression of Neisseria meningitidis iron-regulated outer membrane proteins, including a 70-kilodalton transferrin receptor, and their potential for use as vaccines. Infect Immun. 1990 Sep;58(9):2875–2881. doi: 10.1128/iai.58.9.2875-2881.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bjune G., Høiby E. A., Grønnesby J. K., Arnesen O., Fredriksen J. H., Halstensen A., Holten E., Lindbak A. K., Nøkleby H., Rosenqvist E. Effect of outer membrane vesicle vaccine against group B meningococcal disease in Norway. Lancet. 1991 Nov 2;338(8775):1093–1096. doi: 10.1016/0140-6736(91)91961-s. [DOI] [PubMed] [Google Scholar]
  8. Caugant D. A., Bol P., Høiby E. A., Zanen H. C., Frøholm L. O. Clones of serogroup B Neisseria meningitidis causing systemic disease in The Netherlands, 1958-1986. J Infect Dis. 1990 Oct;162(4):867–874. doi: 10.1093/infdis/162.4.867. [DOI] [PubMed] [Google Scholar]
  9. Caugant D. A., Bøvre K., Gaustad P., Bryn K., Holten E., Høiby E. A., Frøholm L. O. Multilocus genotypes determined by enzyme electrophoresis of Neisseria meningitidis isolated from patients with systemic disease and from healthy carriers. J Gen Microbiol. 1986 Mar;132(3):641–652. doi: 10.1099/00221287-132-3-641. [DOI] [PubMed] [Google Scholar]
  10. Caugant D. A., Frøholm L. O., Bøvre K., Holten E., Frasch C. E., Mocca L. F., Zollinger W. D., Selander R. K. Intercontinental spread of a genetically distinctive complex of clones of Neisseria meningitidis causing epidemic disease. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4927–4931. doi: 10.1073/pnas.83.13.4927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cornelissen C. N., Biswas G. D., Tsai J., Paruchuri D. K., Thompson S. A., Sparling P. F. Gonococcal transferrin-binding protein 1 is required for transferrin utilization and is homologous to TonB-dependent outer membrane receptors. J Bacteriol. 1992 Sep;174(18):5788–5797. doi: 10.1128/jb.174.18.5788-5797.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cornelissen C. N., Sparling P. F. Binding and surface exposure characteristics of the gonococcal transferrin receptor are dependent on both transferrin-binding proteins. J Bacteriol. 1996 Mar;178(5):1437–1444. doi: 10.1128/jb.178.5.1437-1444.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Danve B., Lissolo L., Mignon M., Dumas P., Colombani S., Schryvers A. B., Quentin-Millet M. J. Transferrin-binding proteins isolated from Neisseria meningitidis elicit protective and bactericidal antibodies in laboratory animals. Vaccine. 1993 Sep;11(12):1214–1220. doi: 10.1016/0264-410x(93)90045-y. [DOI] [PubMed] [Google Scholar]
  14. Dyer D. W., West E. P., McKenna W., Thompson S. A., Sparling P. F. A pleiotropic iron-uptake mutant of Neisseria meningitidis lacks a 70-kilodalton iron-regulated protein. Infect Immun. 1988 Apr;56(4):977–983. doi: 10.1128/iai.56.4.977-983.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ferron L., Ferreiros C. M., Criado M. T., Pintor M. Immunogenicity and antigenic heterogeneity of a human transferrin-binding protein in Neisseria meningitidis. Infect Immun. 1992 Jul;60(7):2887–2892. doi: 10.1128/iai.60.7.2887-2892.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gerlach G. F., Anderson C., Potter A. A., Klashinsky S., Willson P. J. Cloning and expression of a transferrin-binding protein from Actinobacillus pleuropneumoniae. Infect Immun. 1992 Mar;60(3):892–898. doi: 10.1128/iai.60.3.892-898.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gorringe A. R., Borrow R., Fox A. J., Robinson A. Human antibody response to meningococcal transferrin binding proteins: evidence for vaccine potential. Vaccine. 1995 Sep;13(13):1207–1212. doi: 10.1016/0264-410x(95)00055-6. [DOI] [PubMed] [Google Scholar]
  18. Griffiths E., Stevenson P., Ray A. Antigenic and molecular heterogeneity of the transferrin-binding protein of Neisseria meningitidis. FEMS Microbiol Lett. 1990 May;57(1-2):31–36. doi: 10.1016/0378-1097(90)90408-i. [DOI] [PubMed] [Google Scholar]
  19. Kasper D. L., Winkelhake J. L., Brandt B. L., Artenstein M. S. Antigenic specificity of bactericidal antibodies in antisera to Neisseria meningitidis. J Infect Dis. 1973 Apr;127(4):378–387. doi: 10.1093/infdis/127.4.378. [DOI] [PubMed] [Google Scholar]
  20. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Legrain M., Mazarin V., Irwin S. W., Bouchon B., Quentin-Millet M. J., Jacobs E., Schryvers A. B. Cloning and characterization of Neisseria meningitidis genes encoding the transferrin-binding proteins Tbp1 and Tbp2. Gene. 1993 Aug 16;130(1):73–80. doi: 10.1016/0378-1119(93)90348-7. [DOI] [PubMed] [Google Scholar]
  23. Legrain M., Speck D., Jacobs E. Production of lipidated meningococcal transferrin binding protein 2 in Escherichia coli. Protein Expr Purif. 1995 Oct;6(5):570–578. doi: 10.1006/prep.1995.1075. [DOI] [PubMed] [Google Scholar]
  24. Lewis L. A., Dyer D. W. Identification of an iron-regulated outer membrane protein of Neisseria meningitidis involved in the utilization of hemoglobin complexed to haptoglobin. J Bacteriol. 1995 Mar;177(5):1299–1306. doi: 10.1128/jb.177.5.1299-1306.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lissolo L., Maitre-Wilmotte G., Dumas P., Mignon M., Danve B., Quentin-Millet M. J. Evaluation of transferrin-binding protein 2 within the transferrin-binding protein complex as a potential antigen for future meningococcal vaccines. Infect Immun. 1995 Mar;63(3):884–890. doi: 10.1128/iai.63.3.884-890.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Loosmore S. M., Yang Y. P., Coleman D. C., Shortreed J. M., England D. M., Harkness R. E., Chong P. S., Klein M. H. Cloning and expression of the Haemophilus influenzae transferrin receptor genes. Mol Microbiol. 1996 Feb;19(3):575–586. doi: 10.1046/j.1365-2958.1996.406943.x. [DOI] [PubMed] [Google Scholar]
  27. Mandrell R. E., Zollinger W. D. Human immune response to meningococcal outer membrane protein epitopes after natural infection or vaccination. Infect Immun. 1989 May;57(5):1590–1598. doi: 10.1128/iai.57.5.1590-1598.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mazarin V., Rokbi B., Quentin-Millet M. J. Diversity of the transferrin-binding protein Tbp2 of Neisseria meningitidis. Gene. 1995 May 26;158(1):145–146. doi: 10.1016/0378-1119(95)00151-u. [DOI] [PubMed] [Google Scholar]
  29. Mietzner T. A., Luginbuhl G. H., Sandstrom E., Morse S. A. Identification of an iron-regulated 37,000-dalton protein in the cell envelope of Neisseria gonorrhoeae. Infect Immun. 1984 Aug;45(2):410–416. doi: 10.1128/iai.45.2.410-416.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Milagres L. G., Lemos A. P., Meles C. E., Silva E. L., Ferreira L. H., Souza J. A., Carlone G. M. Antibody response after immunization of Brazilian children with serogroup C meningococcal polysaccharide noncovalently complexed with outer membrane proteins. Braz J Med Biol Res. 1995 Sep;28(9):981–989. [PubMed] [Google Scholar]
  31. Milagres L. G., Ramos S. R., Sacchi C. T., Melles C. E., Vieira V. S., Sato H., Brito G. S., Moraes J. C., Frasch C. E. Immune response of Brazilian children to a Neisseria meningitidis serogroup B outer membrane protein vaccine: comparison with efficacy. Infect Immun. 1994 Oct;62(10):4419–4424. doi: 10.1128/iai.62.10.4419-4424.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Poolman J. T., Abdillahi H. Outer membrane protein serosubtyping of Neisseria meningitidis. Eur J Clin Microbiol Infect Dis. 1988 Apr;7(2):291–292. doi: 10.1007/BF01963104. [DOI] [PubMed] [Google Scholar]
  33. Poolman J. T. Molecular immunological analysis of meningococcal class 1 outer membrane protein and lipopolysaccharide. Trans R Soc Trop Med Hyg. 1991;85 (Suppl 1):23–23. doi: 10.1016/0035-9203(91)90336-w. [DOI] [PubMed] [Google Scholar]
  34. Rokbi B., Maitre-Wilmotte G., Mazarin V., Fourrichon L., Lissolo L., Quentin-Millet M. J. Variable sequences in a mosaic-like domain of meningococcal tbp2 encode immunoreactive epitopes. FEMS Microbiol Lett. 1995 Oct 15;132(3):277–283. doi: 10.1016/0378-1097(95)00326-z. [DOI] [PubMed] [Google Scholar]
  35. Rokbi B., Mazarin V., Maitre-Wilmotte G., Quentin-Millet M. J. Identification of two major families of transferrin receptors among Neisseria meningitidis strains based on antigenic and genomic features. FEMS Microbiol Lett. 1993 Jun 1;110(1):51–57. doi: 10.1111/j.1574-6968.1993.tb06294.x. [DOI] [PubMed] [Google Scholar]
  36. Rossi-Campos A., Anderson C., Gerlach G. F., Klashinsky S., Potter A. A., Willson P. J. Immunization of pigs against Actinobacillus pleuropneumoniae with two recombinant protein preparations. Vaccine. 1992;10(8):512–518. doi: 10.1016/0264-410x(92)90349-o. [DOI] [PubMed] [Google Scholar]
  37. Salvi R. J., Ahroon W., Saunders S. S., Arnold S. A. Evoked potentials: computer-automated threshold-tracking procedure using an objective detection criterion. Ear Hear. 1987 Jun;8(3):151–156. [PubMed] [Google Scholar]
  38. Schryvers A. B., Morris L. J. Identification and characterization of the human lactoferrin-binding protein from Neisseria meningitidis. Infect Immun. 1988 May;56(5):1144–1149. doi: 10.1128/iai.56.5.1144-1149.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Schryvers A. B., Morris L. J. Identification and characterization of the transferrin receptor from Neisseria meningitidis. Mol Microbiol. 1988 Mar;2(2):281–288. doi: 10.1111/j.1365-2958.1988.tb00029.x. [DOI] [PubMed] [Google Scholar]
  40. Seiler A., Reinhardt R., Sarkari J., Caugant D. A., Achtman M. Allelic polymorphism and site-specific recombination in the opc locus of Neisseria meningitidis. Mol Microbiol. 1996 Feb;19(4):841–856. doi: 10.1046/j.1365-2958.1996.437970.x. [DOI] [PubMed] [Google Scholar]
  41. Sierra G. V., Campa H. C., Varcacel N. M., Garcia I. L., Izquierdo P. L., Sotolongo P. F., Casanueva G. V., Rico C. O., Rodriguez C. R., Terry M. H. Vaccine against group B Neisseria meningitidis: protection trial and mass vaccination results in Cuba. NIPH Ann. 1991 Dec;14(2):195–210. [PubMed] [Google Scholar]
  42. Stevenson P., Williams P., Griffiths E. Common antigenic domains in transferrin-binding protein 2 of Neisseria meningitidis, Neisseria gonorrhoeae, and Haemophilus influenzae type b. Infect Immun. 1992 Jun;60(6):2391–2396. doi: 10.1128/iai.60.6.2391-2396.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Stojiljkovic I., Hwa V., de Saint Martin L., O'Gaora P., Nassif X., Heffron F., So M. The Neisseria meningitidis haemoglobin receptor: its role in iron utilization and virulence. Mol Microbiol. 1995 Feb;15(3):531–541. doi: 10.1111/j.1365-2958.1995.tb02266.x. [DOI] [PubMed] [Google Scholar]
  44. Stojiljkovic I., Larson J., Hwa V., Anic S., So M. HmbR outer membrane receptors of pathogenic Neisseria spp.: iron-regulated, hemoglobin-binding proteins with a high level of primary structure conservation. J Bacteriol. 1996 Aug;178(15):4670–4678. doi: 10.1128/jb.178.15.4670-4678.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Vonder Haar R. A., Legrain M., Kolbe H. V., Jacobs E. Characterization of a highly structured domain in Tbp2 from Neisseria meningitidis involved in binding to human transferrin. J Bacteriol. 1994 Oct;176(20):6207–6213. doi: 10.1128/jb.176.20.6207-6213.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wang J. F., Caugant D. A., Morelli G., Koumaré B., Achtman M. Antigenic and epidemiologic properties of the ET-37 complex of Neisseria meningitidis. J Infect Dis. 1993 Jun;167(6):1320–1329. doi: 10.1093/infdis/167.6.1320. [DOI] [PubMed] [Google Scholar]
  48. Wyle F. A., Artenstein M. S., Brandt B. L., Tramont E. C., Kasper D. L., Altieri P. L., Berman S. L., Lowenthal J. P. Immunologic response of man to group B meningococcal polysaccharide vaccines. J Infect Dis. 1972 Nov;126(5):514–521. doi: 10.1093/infdis/126.5.514. [DOI] [PubMed] [Google Scholar]
  49. Zollinger W. D., Boslego J., Moran E., Garcia J., Cruz C., Ruiz S., Brandt B., Martinez M., Arthur J., Underwood P. Meningococcal serogroup B vaccine protection trial and follow-up studies in Chile. The Chilean National Committee for Meningococcal Disease. NIPH Ann. 1991 Dec;14(2):211–213. [PubMed] [Google Scholar]
  50. Zollinger W. D., Mandrell R. E., Griffiss J. M., Altieri P., Berman S. Complex of meningococcal group B polysaccharide and type 2 outer membrane protein immunogenic in man. J Clin Invest. 1979 May;63(5):836–848. doi: 10.1172/JCI109383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. de Moraes J. C., Perkins B. A., Camargo M. C., Hidalgo N. T., Barbosa H. A., Sacchi C. T., Landgraf I. M., Gattas V. L., Vasconcelos H. de G., Gral I. M. Protective efficacy of a serogroup B meningococcal vaccine in Sao Paulo, Brazil. Lancet. 1992 Oct 31;340(8827):1074–1078. doi: 10.1016/0140-6736(92)93086-3. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES