Skip to main content
Thorax logoLink to Thorax
. 2000 Oct;55(10):848–853. doi: 10.1136/thorax.55.10.848

Oxidative enzyme activities of the vastus lateralis muscle and the functional status in patients with COPD

F Maltais 1, P LeBlanc 1, F Whittom 1, C Simard 1, K Marquis 1, M Belanger 1, M Breton 1, J Jobin 1
PMCID: PMC1745616  PMID: 10992537

Abstract

BACKGROUND—Enzymatic and histochemical abnormalities of the peripheral muscle may play a role in exercise intolerance in patients with chronic obstructive pulmonary disease (COPD). A study was undertaken to measure the mitochondrial enzyme activity of the vastus lateralis muscle in patients with COPD and to evaluate the relationship between enzyme activities and functional status.
METHODS—Fifty seven patients with COPD of mean (SD) age 66 (7) years with forced expiratory volume in one second (FEV1) 39 (15)% predicted and peak oxygen uptake (V̇O2) of 14 (4) ml/min/kg and 15 normal subjects of similar age were included in the study. Each subject performed a stepwise exercise test up to maximal capacity during which five-breath averages of V̇O2 were measured. Muscle specimens were obtained by percutaneous needle biopsy of the vastus lateralis muscle and the activity of two mitochondrial enzymes (citrate synthase (CS) and 3-hydroxyacyl CoA dehydrogenase (HADH)) was measured. The functional status of the patients was classified according to peak V̇O2.
RESULTS—CS and HADH activities were markedly reduced in patients with COPD compared with normal subjects (22.3 (2.7) versus 29.5 (7.3) µmol/min/g muscle (p<0.0001) and 5.1 (2.0) versus 6.7 (1.9) µmol/min/g muscle (p<0.005), respectively). The activity of CS decreased progressively with the deterioration in the functional status while that of HADH was not related to functional status. Using a stepwise regression analysis, percentage predicted functional residual capacity (FRC), the activity of CS, oxygen desaturation during exercise, age, and inspiratory capacity (% pred) were found to be significant determinants of peak V̇O2. The regression model explained 59% of the variance in peak V̇O2 (p<0.0001).
CONCLUSIONS—The oxidative capacity of the vastus lateralis muscle is reduced in patients with moderate to severe COPD compared with normal subjects of similar age. In these individuals the activity of CS correlated significantly with peak exercise capacity and independently of lung function impairment.



Full Text

The Full Text of this article is available as a PDF (158.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Casaburi R., Patessio A., Ioli F., Zanaboni S., Donner C. F., Wasserman K. Reductions in exercise lactic acidosis and ventilation as a result of exercise training in patients with obstructive lung disease. Am Rev Respir Dis. 1991 Jan;143(1):9–18. doi: 10.1164/ajrccm/143.1.9. [DOI] [PubMed] [Google Scholar]
  2. Clark T. J., Freedman S., Campbell E. J., Winn R. R. The ventilatory capacity of patients with chronic airways obstruction. Clin Sci. 1969 Apr;36(2):307–316. [PubMed] [Google Scholar]
  3. Dodd D. S., Brancatisano T., Engel L. A. Chest wall mechanics during exercise in patients with severe chronic air-flow obstruction. Am Rev Respir Dis. 1984 Jan;129(1):33–38. doi: 10.1164/arrd.1984.129.1.33. [DOI] [PubMed] [Google Scholar]
  4. Hamilton A. L., Killian K. J., Summers E., Jones N. L. Muscle strength, symptom intensity, and exercise capacity in patients with cardiorespiratory disorders. Am J Respir Crit Care Med. 1995 Dec;152(6 Pt 1):2021–2031. doi: 10.1164/ajrccm.152.6.8520771. [DOI] [PubMed] [Google Scholar]
  5. Hildebrand I. L., Sylvén C., Esbjörnsson M., Hellström K., Jansson E. Does chronic hypoxaemia induce transformations of fibre types? Acta Physiol Scand. 1991 Mar;141(3):435–439. doi: 10.1111/j.1748-1716.1991.tb09102.x. [DOI] [PubMed] [Google Scholar]
  6. Holloszy J. O., Coyle E. F. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol Respir Environ Exerc Physiol. 1984 Apr;56(4):831–838. doi: 10.1152/jappl.1984.56.4.831. [DOI] [PubMed] [Google Scholar]
  7. Hughes R. L., Katz H., Sahgal V., Campbell J. A., Hartz R., Shields T. W. Fiber size and energy metabolites in five separate muscles from patients with chronic obstructive lung diseases. Respiration. 1983;44(5):321–328. doi: 10.1159/000194564. [DOI] [PubMed] [Google Scholar]
  8. Jakobsson P., Jorfeldt L., Brundin A. Skeletal muscle metabolites and fibre types in patients with advanced chronic obstructive pulmonary disease (COPD), with and without chronic respiratory failure. Eur Respir J. 1990 Feb;3(2):192–196. [PubMed] [Google Scholar]
  9. Jakobsson P., Jorfeldt L., Henriksson J. Metabolic enzyme activity in the quadriceps femoris muscle in patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1995 Feb;151(2 Pt 1):374–377. doi: 10.1164/ajrccm.151.2.7842194. [DOI] [PubMed] [Google Scholar]
  10. Jakobsson P., Jorfeldt L., von Schenck H. Fat metabolism and its response to infusion of insulin and glucose in patients with advanced chronic obstructive pulmonary disease. Clin Physiol. 1995 Jul;15(4):319–329. doi: 10.1111/j.1475-097x.1995.tb00522.x. [DOI] [PubMed] [Google Scholar]
  11. Killian K. J., Leblanc P., Martin D. H., Summers E., Jones N. L., Campbell E. J. Exercise capacity and ventilatory, circulatory, and symptom limitation in patients with chronic airflow limitation. Am Rev Respir Dis. 1992 Oct;146(4):935–940. doi: 10.1164/ajrccm/146.4.935. [DOI] [PubMed] [Google Scholar]
  12. Knudson R. J., Slatin R. C., Lebowitz M. D., Burrows B. The maximal expiratory flow-volume curve. Normal standards, variability, and effects of age. Am Rev Respir Dis. 1976 May;113(5):587–600. doi: 10.1164/arrd.1976.113.5.587. [DOI] [PubMed] [Google Scholar]
  13. Kutsuzawa T., Shioya S., Kurita D., Haida M., Ohta Y., Yamabayashi H. 31P-NMR study of skeletal muscle metabolism in patients with chronic respiratory impairment. Am Rev Respir Dis. 1992 Oct;146(4):1019–1024. doi: 10.1164/ajrccm/146.4.1019. [DOI] [PubMed] [Google Scholar]
  14. Maltais F., Jobin J., Sullivan M. J., Bernard S., Whittom F., Killian K. J., Desmeules M., Bélanger M., LeBlanc P. Metabolic and hemodynamic responses of lower limb during exercise in patients with COPD. J Appl Physiol (1985) 1998 May;84(5):1573–1580. doi: 10.1152/jappl.1998.84.5.1573. [DOI] [PubMed] [Google Scholar]
  15. Maltais F., LeBlanc P., Simard C., Jobin J., Bérubé C., Bruneau J., Carrier L., Belleau R. Skeletal muscle adaptation to endurance training in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1996 Aug;154(2 Pt 1):442–447. doi: 10.1164/ajrccm.154.2.8756820. [DOI] [PubMed] [Google Scholar]
  16. Maltais F., Simard A. A., Simard C., Jobin J., Desgagnés P., LeBlanc P. Oxidative capacity of the skeletal muscle and lactic acid kinetics during exercise in normal subjects and in patients with COPD. Am J Respir Crit Care Med. 1996 Jan;153(1):288–293. doi: 10.1164/ajrccm.153.1.8542131. [DOI] [PubMed] [Google Scholar]
  17. Maltais F., Sullivan M. J., LeBlanc P., Duscha B. D., Schachat F. H., Simard C., Blank J. M., Jobin J. Altered expression of myosin heavy chain in the vastus lateralis muscle in patients with COPD. Eur Respir J. 1999 Apr;13(4):850–854. doi: 10.1034/j.1399-3003.1999.13d26.x. [DOI] [PubMed] [Google Scholar]
  18. Murariu C., Ghezzo H., Milic-Emili J., Gautier H. Exercise limitation in obstructive lung disease. Chest. 1998 Oct;114(4):965–968. doi: 10.1378/chest.114.4.965. [DOI] [PubMed] [Google Scholar]
  19. O'Donnell D. E., Webb K. A. Exertional breathlessness in patients with chronic airflow limitation. The role of lung hyperinflation. Am Rev Respir Dis. 1993 Nov;148(5):1351–1357. doi: 10.1164/ajrccm/148.5.1351. [DOI] [PubMed] [Google Scholar]
  20. Richardson R. S., Sheldon J., Poole D. C., Hopkins S. R., Ries A. L., Wagner P. D. Evidence of skeletal muscle metabolic reserve during whole body exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999 Mar;159(3):881–885. doi: 10.1164/ajrccm.159.3.9803049. [DOI] [PubMed] [Google Scholar]
  21. Saltin B., Henriksson J., Nygaard E., Andersen P., Jansson E. Fiber types and metabolic potentials of skeletal muscles in sedentary man and endurance runners. Ann N Y Acad Sci. 1977;301:3–29. doi: 10.1111/j.1749-6632.1977.tb38182.x. [DOI] [PubMed] [Google Scholar]
  22. Satta A., Migliori G. B., Spanevello A., Neri M., Bottinelli R., Canepari M., Pellegrino M. A., Reggiani C. Fibre types in skeletal muscles of chronic obstructive pulmonary disease patients related to respiratory function and exercise tolerance. Eur Respir J. 1997 Dec;10(12):2853–2860. doi: 10.1183/09031936.97.10122853. [DOI] [PubMed] [Google Scholar]
  23. Sauleda J., García-Palmer F., Wiesner R. J., Tarraga S., Harting I., Tomás P., Gómez C., Saus C., Palou A., Agustí A. G. Cytochrome oxidase activity and mitochondrial gene expression in skeletal muscle of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998 May;157(5 Pt 1):1413–1417. doi: 10.1164/ajrccm.157.5.9710039. [DOI] [PubMed] [Google Scholar]
  24. Similowski T., Yan S., Gauthier A. P., Macklem P. T., Bellemare F. Contractile properties of the human diaphragm during chronic hyperinflation. N Engl J Med. 1991 Sep 26;325(13):917–923. doi: 10.1056/NEJM199109263251304. [DOI] [PubMed] [Google Scholar]
  25. Weber K. T., Janicki J. S. Lactate production during maximal and submaximal exercise in patients with chronic heart failure. J Am Coll Cardiol. 1985 Oct;6(4):717–724. doi: 10.1016/s0735-1097(85)80472-1. [DOI] [PubMed] [Google Scholar]
  26. Westerblad H., Lee J. A., Lännergren J., Allen D. G. Cellular mechanisms of fatigue in skeletal muscle. Am J Physiol. 1991 Aug;261(2 Pt 1):C195–C209. doi: 10.1152/ajpcell.1991.261.2.C195. [DOI] [PubMed] [Google Scholar]
  27. Whittom F., Jobin J., Simard P. M., Leblanc P., Simard C., Bernard S., Belleau R., Maltais F. Histochemical and morphological characteristics of the vastus lateralis muscle in patients with chronic obstructive pulmonary disease. Med Sci Sports Exerc. 1998 Oct;30(10):1467–1474. doi: 10.1097/00005768-199810000-00001. [DOI] [PubMed] [Google Scholar]
  28. Zammit V. A., Newsholme E. A. The maximum activities of hexokinase, phosphorylase, phosphofructokinase, glycerol phosphate dehydrogenases, lactate dehydrogenase, octopine dehydrogenase, phosphoenolpyruvate carboxykinase, nucleoside diphosphatekinase, glutamate-oxaloacetate transaminase and arginine kinase in relation to carbohydrate utilization in muscles from marine invertebrates. Biochem J. 1976 Dec 15;160(3):447–462. doi: 10.1042/bj1600447. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES