Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Jan;65(1):116–121. doi: 10.1128/iai.65.1.116-121.1997

Immunoglobulin E, a pathogenic factor in Plasmodium falciparum malaria.

P Perlmann 1, H Perlmann 1, B W Flyg 1, M Hagstedt 1, G Elghazali 1, S Worku 1, V Fernandez 1, A S Rutta 1, M Troye-Blomberg 1
PMCID: PMC174564  PMID: 8975900

Abstract

Most children and adults living in areas where the endemicity of Plasmodium falciparum malaria is high have significantly elevated levels of both total immunoglobulin E (IgE) and IgE antimalarial antibodies in blood. This elevation is highest in patients with cerebral malaria, suggesting a pathogenic role for this immunoglobulin isotype. In this study, we show that IgE elevation may also be seen in severe malaria without cerebral involvement and parallels an elevation of tumor necrosis factor alpha (TNF). IgE-containing serum from malaria immune donors was added to tissue culture plates coated with rabbit anti-human IgE antibodies or with P. falciparum antigen. IgE-anti-IgE complexes as well as antigen-binding IgE antibodies induced TNF release from peripheral blood mononuclear cells (PBMC). Nonmalaria control sera with no IgE elevation induced significantly less of this cytokine, and the TNF-inducing capacity of malaria sera was also strongly reduced by passing them over anti-IgE Sepharose columns. The cells giving rise to TNF were adherent PBMC. The release of this cytokine probably reflects cross-linking of their low-affinity receptors for IgE (CD23) by IgE-containing immune complexes known to give rise to monocyte activation via the NO transduction pathway. In line with this, adherent monocytic cells exposed to IgE complexes displayed increased expression of CD23. As the malaria sera contained IgG anti-IgE antibodies, such complexes probably also play a role in the induction of TNF in vivo. Overproduction of TNF is considered a major pathogenic mechanism responsible for fever and tissue lesions in P. falciparum malaria. This overproduction is generally assumed to reflect a direct stimulation of effector cells by certain parasite-derived toxins. Our results suggest that IgE elevation constitutes yet another important mechanism involved in excessive TNF induction in this disease.

Full Text

The Full Text of this article is available as a PDF (214.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aggarwal B. B., Natarajan K. Tumor necrosis factors: developments during the last decade. Eur Cytokine Netw. 1996 Apr-Jun;7(2):93–124. [PubMed] [Google Scholar]
  2. Berendt A. R., Simmons D. L., Tansey J., Newbold C. I., Marsh K. Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum. Nature. 1989 Sep 7;341(6237):57–59. doi: 10.1038/341057a0. [DOI] [PubMed] [Google Scholar]
  3. Bonnefoy J. Y., Aubry J. P., Gauchat J. F., Graber P., Life P., Flores-Romo L., Mazzei G. Receptors for IgE. Curr Opin Immunol. 1993 Dec;5(6):944–949. doi: 10.1016/0952-7915(93)90110-e. [DOI] [PubMed] [Google Scholar]
  4. Borish L., Mascali J. J., Rosenwasser L. J. IgE-dependent cytokine production by human peripheral blood mononuclear phagocytes. J Immunol. 1991 Jan 1;146(1):63–67. [PubMed] [Google Scholar]
  5. Capron M., Capron A. Immunoglobulin E and effector cells in schistosomiasis. Science. 1994 Jun 24;264(5167):1876–1877. doi: 10.1126/science.8009216. [DOI] [PubMed] [Google Scholar]
  6. Clark I. A., Hunt N. H., Butcher G. A., Cowden W. B. Inhibition of murine malaria (Plasmodium chabaudi) in vivo by recombinant interferon-gamma or tumor necrosis factor, and its enhancement by butylated hydroxyanisole. J Immunol. 1987 Nov 15;139(10):3493–3496. [PubMed] [Google Scholar]
  7. Clark I. A., Rockett K. A., Cowden W. B. Proposed link between cytokines, nitric oxide and human cerebral malaria. Parasitol Today. 1991 Aug;7(8):205–207. doi: 10.1016/0169-4758(91)90142-b. [DOI] [PubMed] [Google Scholar]
  8. Delespesse G., Sarfati M., Wu C. Y., Fournier S., Letellier M. The low-affinity receptor for IgE. Immunol Rev. 1992 Feb;125:77–97. doi: 10.1111/j.1600-065x.1992.tb00626.x. [DOI] [PubMed] [Google Scholar]
  9. Delespesse G., Suter U., Mossalayi D., Bettler B., Sarfati M., Hofstetter H., Kilcherr E., Debre P., Dalloul A. Expression, structure, and function of the CD23 antigen. Adv Immunol. 1991;49:149–191. doi: 10.1016/s0065-2776(08)60776-2. [DOI] [PubMed] [Google Scholar]
  10. Desowitz R. S., Elm J., Alpers M. P. Plasmodium falciparum-specific immunoglobulin G (IgG), IgM, and IgE antibodies in paired maternal-cord sera from east Sepik Province, Papua New Guinea. Infect Immun. 1993 Mar;61(3):988–993. doi: 10.1128/iai.61.3.988-993.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Desowitz R. S. Plasmodium-specific immunoglobulin E in sera from an area of holoendemic malaria. Trans R Soc Trop Med Hyg. 1989 Jul-Aug;83(4):478–479. doi: 10.1016/0035-9203(89)90254-x. [DOI] [PubMed] [Google Scholar]
  12. Dugas B., Mossalayi M. D., Damais C., Kolb J. P. Nitric oxide production by human monocytes: evidence for a role of CD23. Immunol Today. 1995 Dec;16(12):574–580. doi: 10.1016/0167-5699(95)80080-8. [DOI] [PubMed] [Google Scholar]
  13. Finkelman F. D., Holmes J., Katona I. M., Urban J. F., Jr, Beckmann M. P., Park L. S., Schooley K. A., Coffman R. L., Mosmann T. R., Paul W. E. Lymphokine control of in vivo immunoglobulin isotype selection. Annu Rev Immunol. 1990;8:303–333. doi: 10.1146/annurev.iy.08.040190.001511. [DOI] [PubMed] [Google Scholar]
  14. Grau G. E., Taylor T. E., Molyneux M. E., Wirima J. J., Vassalli P., Hommel M., Lambert P. H. Tumor necrosis factor and disease severity in children with falciparum malaria. N Engl J Med. 1989 Jun 15;320(24):1586–1591. doi: 10.1056/NEJM198906153202404. [DOI] [PubMed] [Google Scholar]
  15. Hagan P. IgE and protective immunity to helminth infections. Parasite Immunol. 1993 Jan;15(1):1–4. doi: 10.1111/j.1365-3024.1993.tb00565.x. [DOI] [PubMed] [Google Scholar]
  16. Helmby H., Perlmann H., Troye-Blomberg M., Perlmann P. Immunoglobulin E elevation in Plasmodium chabaudi malaria. Infect Immun. 1996 Apr;64(4):1432–1433. doi: 10.1128/iai.64.4.1432-1433.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hommel M. Amplification of cytoadherence in cerebral malaria: towards a more rational explanation of disease pathophysiology. Ann Trop Med Parasitol. 1993 Dec;87(6):627–635. doi: 10.1080/00034983.1993.11812821. [DOI] [PubMed] [Google Scholar]
  18. Jakobsen P. H., Bate C. A., Taverne J., Playfair J. H. Malaria: toxins, cytokines and disease. Parasite Immunol. 1995 May;17(5):223–231. doi: 10.1111/j.1365-3024.1995.tb01019.x. [DOI] [PubMed] [Google Scholar]
  19. Karunaweera N. D., Grau G. E., Gamage P., Carter R., Mendis K. N. Dynamics of fever and serum levels of tumor necrosis factor are closely associated during clinical paroxysms in Plasmodium vivax malaria. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3200–3203. doi: 10.1073/pnas.89.8.3200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kawabe T., Takami M., Hosoda M., Maeda Y., Sato S., Mayumi M., Mikawa H., Arai K., Yodoi J. Regulation of Fc epsilon R2/CD23 gene expression by cytokines and specific ligands (IgE and anti-Fc epsilon R2 monoclonal antibody). Variable regulation depending on the cell types. J Immunol. 1988 Aug 15;141(4):1376–1382. [PubMed] [Google Scholar]
  21. Kumaratilake L. M., Ferrante A., Rzepczyk C. M. Tumor necrosis factor enhances neutrophil-mediated killing of Plasmodium falciparum. Infect Immun. 1990 Mar;58(3):788–793. doi: 10.1128/iai.58.3.788-793.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kwiatkowski D. Febrile temperatures can synchronize the growth of Plasmodium falciparum in vitro. J Exp Med. 1989 Jan 1;169(1):357–361. doi: 10.1084/jem.169.1.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kwiatkowski D., Hill A. V., Sambou I., Twumasi P., Castracane J., Manogue K. R., Cerami A., Brewster D. R., Greenwood B. M. TNF concentration in fatal cerebral, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria. Lancet. 1990 Nov 17;336(8725):1201–1204. doi: 10.1016/0140-6736(90)92827-5. [DOI] [PubMed] [Google Scholar]
  24. Kwiatkowski D., Molyneux M. E., Stephens S., Curtis N., Klein N., Pointaire P., Smit M., Allan R., Brewster D. R., Grau G. E. Anti-TNF therapy inhibits fever in cerebral malaria. Q J Med. 1993 Feb;86(2):91–98. [PubMed] [Google Scholar]
  25. Lecoanet-Henchoz S., Gauchat J. F., Aubry J. P., Graber P., Life P., Paul-Eugene N., Ferrua B., Corbi A. L., Dugas B., Plater-Zyberk C. CD23 regulates monocyte activation through a novel interaction with the adhesion molecules CD11b-CD18 and CD11c-CD18. Immunity. 1995 Jul;3(1):119–125. doi: 10.1016/1074-7613(95)90164-7. [DOI] [PubMed] [Google Scholar]
  26. McGuire W., Hill A. V., Allsopp C. E., Greenwood B. M., Kwiatkowski D. Variation in the TNF-alpha promoter region associated with susceptibility to cerebral malaria. Nature. 1994 Oct 6;371(6497):508–510. doi: 10.1038/371508a0. [DOI] [PubMed] [Google Scholar]
  27. Mendis K. N., Naotunne T. D., Karunaweera N. D., Del Giudice G., Grau G. E., Carter R. Anti-parasite effects of cytokines in malaria. Immunol Lett. 1990 Aug;25(1-3):217–220. doi: 10.1016/0165-2478(90)90118-a. [DOI] [PubMed] [Google Scholar]
  28. Miller L. H., Good M. F., Milon G. Malaria pathogenesis. Science. 1994 Jun 24;264(5167):1878–1883. doi: 10.1126/science.8009217. [DOI] [PubMed] [Google Scholar]
  29. Muñoz-Fernández M. A., Fernández M. A., Fresno M. Activation of human macrophages for the killing of intracellular Trypanosoma cruzi by TNF-alpha and IFN-gamma through a nitric oxide-dependent mechanism. Immunol Lett. 1992 Jun;33(1):35–40. doi: 10.1016/0165-2478(92)90090-b. [DOI] [PubMed] [Google Scholar]
  30. Perlmann H., Helmby H., Hagstedt M., Carlson J., Larsson P. H., Troye-Blomberg M., Perlmann P. IgE elevation and IgE anti-malarial antibodies in Plasmodium falciparum malaria: association of high IgE levels with cerebral malaria. Clin Exp Immunol. 1994 Aug;97(2):284–292. doi: 10.1111/j.1365-2249.1994.tb06082.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pichyangkul S., Saengkrai P., Webster H. K. Plasmodium falciparum pigment induces monocytes to release high levels of tumor necrosis factor-alpha and interleukin-1 beta. Am J Trop Med Hyg. 1994 Oct;51(4):430–435. [PubMed] [Google Scholar]
  32. Picot S., Peyron F., Deloron P., Boudin C., Chumpitazi B., Barbe G., Vuillez J. P., Donadille A., Ambroise-Thomas P. Ring-infected erythrocyte surface antigen (Pf/155RESA) induces tumour necrosis factor-alpha production. Clin Exp Immunol. 1993 Aug;93(2):184–188. doi: 10.1111/j.1365-2249.1993.tb07963.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pritchard D. I. Immunity to helminths: is too much IgE parasite--rather than host-protective? Parasite Immunol. 1993 Jan;15(1):5–9. doi: 10.1111/j.1365-3024.1993.tb00566.x. [DOI] [PubMed] [Google Scholar]
  34. Punnonen J., Aversa G., Cocks B. G., McKenzie A. N., Menon S., Zurawski G., de Waal Malefyt R., de Vries J. E. Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3730–3734. doi: 10.1073/pnas.90.8.3730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schofield L., Hackett F. Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites. J Exp Med. 1993 Jan 1;177(1):145–153. doi: 10.1084/jem.177.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sherman M. P., Loro M. L., Wong V. Z., Tashkin D. P. Cytokine- and Pneumocystis carinii- induced L-arginine oxidation by murine and human pulmonary alveolar macrophages. J Protozool. 1991 Nov-Dec;38(6):234S–236S. [PubMed] [Google Scholar]
  37. Tachado S. D., Gerold P., McConville M. J., Baldwin T., Quilici D., Schwarz R. T., Schofield L. Glycosylphosphatidylinositol toxin of Plasmodium induces nitric oxide synthase expression in macrophages and vascular endothelial cells by a protein tyrosine kinase-dependent and protein kinase C-dependent signaling pathway. J Immunol. 1996 Mar 1;156(5):1897–1907. [PubMed] [Google Scholar]
  38. Troye-Blomberg M., Lepers J. P., Sjöberg K., Rahalimalala L., Larsson A., Olerup O., Perlmann P. Presentation of the Plasmodium falciparum antigen Pf155/RESA to human T cells. Variations in responsiveness induced by antigen presenting cells from different but MHC class II identical donors. Immunol Lett. 1994 Dec;43(1-2):59–66. doi: 10.1016/0165-2478(94)00163-4. [DOI] [PubMed] [Google Scholar]
  39. Vercelli D., Jabara H. H., Lee B. W., Woodland N., Geha R. S., Leung D. Y. Human recombinant interleukin 4 induces Fc epsilon R2/CD23 on normal human monocytes. J Exp Med. 1988 Apr 1;167(4):1406–1416. doi: 10.1084/jem.167.4.1406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Vouldoukis I., Issaly F., Fourcade C., Paul-Eugène N., Arock M., Kolb J. P., da Silva O. A., Monjour L., Poinsot H., Tselentis Y. CD23 and IgE expression during the human immune response to cutaneous leishmaniasis: possible role in monocyte activation. Res Immunol. 1994 Jan;145(1):17–27. doi: 10.1016/s0923-2494(94)80037-5. [DOI] [PubMed] [Google Scholar]
  41. Vouldoukis I., Riveros-Moreno V., Dugas B., Ouaaz F., Bécherel P., Debré P., Moncada S., Mossalayi M. D. The killing of Leishmania major by human macrophages is mediated by nitric oxide induced after ligation of the Fc epsilon RII/CD23 surface antigen. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7804–7808. doi: 10.1073/pnas.92.17.7804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. White N. J., Ho M. The pathophysiology of malaria. Adv Parasitol. 1992;31:83–173. doi: 10.1016/s0065-308x(08)60021-4. [DOI] [PubMed] [Google Scholar]
  43. von der Weid T., Kopf M., Köhler G., Langhorne J. The immune response to Plasmodium chabaudi malaria in interleukin-4-deficient mice. Eur J Immunol. 1994 Oct;24(10):2285–2293. doi: 10.1002/eji.1830241004. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES