Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Jan;65(1):144–149. doi: 10.1128/iai.65.1.144-149.1997

Evidence of the proinflammatory role of Enterococcus faecalis in polymicrobial peritonitis in rats.

P Montravers 1, J Mohler 1, L Saint Julien 1, C Carbon 1
PMCID: PMC174568  PMID: 8975904

Abstract

Although the role of members of the Enterobacteriaceae and anaerobes in the pathogenesis of intra-abdominal infections has been extensively demonstrated, the role played by enterococci in these infections remains controversial. The pathophysiological mechanisms induced by enterococci in intra-abdominal infection were studied in a nonfatal model of peritonitis in rats by implanting a gelatin capsule containing Escherichia coli and Bacteroides fragilis with or without increasing concentrations of Enterococcus faecalis or heat-inactivated enterococci. The ability of the rat peritoneal cavity to sterilize itself after bacterial challenge was evaluated by quantifying the inflammatory response in the peritoneal cavity, reflected by both phagocyte and cytokine responses. Effects were evaluated 6, 12, and 24 h and 3 and 6 days after inoculation. On day 6 after inoculation, the highest enterococcal concentration (10(8) CFU/ml) was accompanied by significantly increased concentrations of E. coli in peritoneal fluid and peritoneal phagocytes when compared to other groups. In the first 12 h after inoculation, tumor necrosis factor and interleukin-6 concentrations were significantly increased in the peritoneal fluid of the animals that had received the highest inoculum of enterococci or heat-inactivated enterococci. In the late period of the study (3 and 6 days), significantly increased leukocyte counts were observed in the peritoneal fluid of these animals. These results suggest that E. faecalis somehow inhibited phagocytosis and intracellular killing of the other pathogens and also played an inflammatory role, which might account for the bacterial synergy observed in this model.

Full Text

The Full Text of this article is available as a PDF (211.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aarden L. A., De Groot E. R., Schaap O. L., Lansdorp P. M. Production of hybridoma growth factor by human monocytes. Eur J Immunol. 1987 Oct;17(10):1411–1416. doi: 10.1002/eji.1830171004. [DOI] [PubMed] [Google Scholar]
  2. Arduino R. C., Murray B. E., Rakita R. M. Roles of antibodies and complement in phagocytic killing of enterococci. Infect Immun. 1994 Mar;62(3):987–993. doi: 10.1128/iai.62.3.987-993.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ayala A., Perrin M. M., Kisala J. M., Ertel W., Chaudry I. H. Polymicrobial sepsis selectively activates peritoneal but not alveolar macrophages to release inflammatory mediators (interleukins-1 and -6 and tumor necrosis factor). Circ Shock. 1992 Mar;36(3):191–199. [PubMed] [Google Scholar]
  4. Bhakdi S., Klonisch T., Nuber P., Fischer W. Stimulation of monokine production by lipoteichoic acids. Infect Immun. 1991 Dec;59(12):4614–4620. doi: 10.1128/iai.59.12.4614-4620.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brakenhoff J. P., de Groot E. R., Evers R. F., Pannekoek H., Aarden L. A. Molecular cloning and expression of hybridoma growth factor in Escherichia coli. J Immunol. 1987 Dec 15;139(12):4116–4121. [PubMed] [Google Scholar]
  6. Dunn D. L., Barke R. A., Knight N. B., Humphrey E. W., Simmons R. L. Role of resident macrophages, peripheral neutrophils, and translymphatic absorption in bacterial clearance from the peritoneal cavity. Infect Immun. 1985 Aug;49(2):257–264. doi: 10.1128/iai.49.2.257-264.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Elsbach P. Degradation of microorganisms by phagocytic cells. Rev Infect Dis. 1980 Jan-Feb;2(1):106–128. doi: 10.1093/clinids/2.1.106. [DOI] [PubMed] [Google Scholar]
  8. Ember J. A., Hugli T. E. Characterization of the human neutrophil response to sex pheromones from Streptococcus faecalis. Am J Pathol. 1989 Apr;134(4):797–805. [PMC free article] [PubMed] [Google Scholar]
  9. Harvey B. S., Baker C. J., Edwards M. S. Contributions of complement and immunoglobulin to neutrophil-mediated killing of enterococci. Infect Immun. 1992 Sep;60(9):3635–3640. doi: 10.1128/iai.60.9.3635-3640.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hay H., Cohen J. Studies on the specificity of the L929 cell bioassay for the measurement of tumour necrosis factor. J Clin Lab Immunol. 1989 Jul;29(3):151–155. [PubMed] [Google Scholar]
  11. Ingham H. R., Sisson P. R., Tharagonnet D., Selkon J. B., Codd A. A. Inhibition of phagocytosis in vitro by obligate anaerobes. Lancet. 1977 Dec 17;2(8051):1252–1254. doi: 10.1016/s0140-6736(77)92662-9. [DOI] [PubMed] [Google Scholar]
  12. Jacob A. E., Hobbs S. J. Conjugal transfer of plasmid-borne multiple antibiotic resistance in Streptococcus faecalis var. zymogenes. J Bacteriol. 1974 Feb;117(2):360–372. doi: 10.1128/jb.117.2.360-372.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kelton J. G., Ulan R., Stiller C., Holmes E. Comparison of chemical composition of peritoneal fluid and serum: a method for monitoring dialysis patients and a tool for assessing binding to serum proteins in vivo. Ann Intern Med. 1978 Jul;89(1):67–70. doi: 10.7326/0003-4819-89-1-67. [DOI] [PubMed] [Google Scholar]
  14. Kramer S. M., Carver M. E., Apperson S. M. Comparison of TNF-alpha and TNF-beta cytolytic biological activities in a serum-free bioassay. Lymphokine Res. 1986;5 (Suppl 1):S139–S143. [PubMed] [Google Scholar]
  15. Lorber B., Swenson R. M. The bacteriology of intra-abdominal infections. Surg Clin North Am. 1975 Dec;55(6):1349–1354. doi: 10.1016/s0039-6109(16)40792-9. [DOI] [PubMed] [Google Scholar]
  16. Matlow A. G., Bohnen J. M., Nohr C., Christou N., Meakins J. Pathogenicity of enterococci in a rat model of fecal peritonitis. J Infect Dis. 1989 Jul;160(1):142–145. doi: 10.1093/infdis/160.1.142. [DOI] [PubMed] [Google Scholar]
  17. Meager A., Leung H., Woolley J. Assays for tumour necrosis factor and related cytokines. J Immunol Methods. 1989 Jan 6;116(1):1–17. doi: 10.1016/0022-1759(89)90306-2. [DOI] [PubMed] [Google Scholar]
  18. Moellering R. C., Jr Emergence of Enterococcus as a significant pathogen. Clin Infect Dis. 1992 Jun;14(6):1173–1176. doi: 10.1093/clinids/14.6.1173. [DOI] [PubMed] [Google Scholar]
  19. Montravers P., Andremont A., Massias L., Carbon C. Investigation of the potential role of Enterococcus faecalis in the pathophysiology of experimental peritonitis. J Infect Dis. 1994 Apr;169(4):821–830. doi: 10.1093/infdis/169.4.821. [DOI] [PubMed] [Google Scholar]
  20. Montravers P., Gauzit R., Muller C., Marmuse J. P., Fichelle A., Desmonts J. M. Emergence of antibiotic-resistant bacteria in cases of peritonitis after intraabdominal surgery affects the efficacy of empirical antimicrobial therapy. Clin Infect Dis. 1996 Sep;23(3):486–494. doi: 10.1093/clinids/23.3.486. [DOI] [PubMed] [Google Scholar]
  21. Murray B. E. The life and times of the Enterococcus. Clin Microbiol Rev. 1990 Jan;3(1):46–65. doi: 10.1128/cmr.3.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nichols R. L., Muzik A. C. Enterococcal infections in surgical patients: the mystery continues. Clin Infect Dis. 1992 Jul;15(1):72–76. doi: 10.1093/clinids/15.1.72. [DOI] [PubMed] [Google Scholar]
  23. Onderdonk A. B., Bartlett J. G., Louie T., Sullivan-Seigler N., Gorbach S. L. Microbial synergy in experimental intra-abdominal abscess. Infect Immun. 1976 Jan;13(1):22–26. doi: 10.1128/iai.13.1.22-26.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rotstein O. D., Pruett T. L., Simmons R. L. Mechanisms of microbial synergy in polymicrobial surgical infections. Rev Infect Dis. 1985 Mar-Apr;7(2):151–170. doi: 10.1093/clinids/7.2.151. [DOI] [PubMed] [Google Scholar]
  25. Weinstein W. M., Onderdonk A. B., Bartlett J. G., Gorbach S. L. Experimental intra-abdominal abscesses in rats: development of an experimental model. Infect Immun. 1974 Dec;10(6):1250–1255. doi: 10.1128/iai.10.6.1250-1255.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Weinstein W. M., Onderdonk A. B., Bartlett J. G., Louie T. J., Gorbach S. L. Antimicrobial therapy of experimental intraabdominal sepsis. J Infect Dis. 1975 Sep;132(3):282–286. doi: 10.1093/infdis/132.3.282. [DOI] [PubMed] [Google Scholar]
  27. Zanetti G., Heumann D., Gérain J., Kohler J., Abbet P., Barras C., Lucas R., Glauser M. P., Baumgartner J. D. Cytokine production after intravenous or peritoneal gram-negative bacterial challenge in mice. Comparative protective efficacy of antibodies to tumor necrosis factor-alpha and to lipopolysaccharide. J Immunol. 1992 Mar 15;148(6):1890–1897. [PubMed] [Google Scholar]
  28. Zeni F., Tardy B., Vindimian M., Comtet C., Page Y., Cusey I., Bertrand J. C. High levels of tumor necrosis factor-alpha and interleukin-6 in the ascitic fluid of cirrhotic patients with spontaneous bacterial peritonitis. Clin Infect Dis. 1993 Aug;17(2):218–223. doi: 10.1093/clinids/17.2.218. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES