Abstract
BACKGROUND—It has been suggested that oxidative stress is an important factor in the pathogenesis of chronic obstructive pulmonary disease (COPD). We have shown that an oxidant/antioxidant imbalance occurs in the distal air spaces of smokers and in patients with COPD which is reflected systemically in the plasma. A study was undertaken to determine whether plasma antioxidant status correlated with lung function as assessed by forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) in smokers and patients with COPD. METHODS—Plasma antioxidant capacity, assessed by the Trolox equivalent antioxidant capacity (TEAC) as an index of overall systemic oxidative stress, and protein thiol levels were measured in 95patients with stable COPD, in 82 healthy smokers, and in 37 healthy non-smokers. RESULTS—Mean (SE) plasma TEAC levels were significantly decreased in patients with COPD (0.81 (0.03) mmol/l, p<0.001) and in healthy smokers (0.87 (0.04) mmol/l, p<0.001) compared with healthy non-smokers (1.31 (0.11) mmol/l). The mean differences in plasma antioxidant capacity (mM) were (0.81, 95% confidence interval (CI) 0.22 to 1.48), (0.87, 95% CI 0.2 to 1.46), and (1.31, 95% CI 1.09 to 1.58) in patients with COPD, healthy smokers, and healthy non-smokers, respectively. This reduction was associated with a 29% (95% CI 18 to 38) and a 30% (95% CI 19 to 40) decrease in plasma protein thiol levels in COPD patients and smokers, respectively. Current smoking was not the main contributor to the reduction in antioxidant capacity in patients with COPD as those patients who were still smokers had similar TEAC levels (mean (SE) 0.78 (0.05); n = 25) to those who had stopped smoking (0.84 (0.02); n = 70). No significant correlations were found between spirometric data measured as FEV1 % predicted or FEV1/FVC % predicted and the plasma levels of TEAC in patients with COPD, healthy smokers, or healthy non-smokers. Similarly, there was no significant correlation between FEV1 %predicted or FEV1/FVC % predicted and the levels of plasma protein thiols in the three groups. CONCLUSIONS—These data confirm decreased antioxidant capacity in smokers and patients with COPD, indicating the presence of systemic oxidative stress. However, no relationship was found between protein thiols or TEAC levels and measurements of airflow limitation in either smokers or in patients with COPD.
Full Text
The Full Text of this article is available as a PDF (147.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bodner C., Godden D., Brown K., Little J., Ross S., Seaton A. Antioxidant intake and adult-onset wheeze: a case-control study. Aberdeen WHEASE Study Group. Eur Respir J. 1999 Jan;13(1):22–30. doi: 10.1183/09031936.99.13102299. [DOI] [PubMed] [Google Scholar]
- Borron W., deBoisblanc B. P. Steroid therapy for chronic obstructive pulmonary disease. Curr Opin Pulm Med. 1998 Mar;4(2):61–65. doi: 10.1097/00063198-199803000-00002. [DOI] [PubMed] [Google Scholar]
- Bridges A. B., Scott N. A., Parry G. J., Belch J. J. Age, sex, cigarette smoking and indices of free radical activity in healthy humans. Eur J Med. 1993 Apr;2(4):205–208. [PubMed] [Google Scholar]
- Britton J. R., Pavord I. D., Richards K. A., Knox A. J., Wisniewski A. F., Lewis S. A., Tattersfield A. E., Weiss S. T. Dietary antioxidant vitamin intake and lung function in the general population. Am J Respir Crit Care Med. 1995 May;151(5):1383–1387. doi: 10.1164/ajrccm.151.5.7735589. [DOI] [PubMed] [Google Scholar]
- Brown D. M., Drost E., Donaldson K., MacNee W. Deformability and CD11/CD18 expression of sequestered neutrophils in normal and inflamed lungs. Am J Respir Cell Mol Biol. 1995 Nov;13(5):531–539. doi: 10.1165/ajrcmb.13.5.7576688. [DOI] [PubMed] [Google Scholar]
- Dekhuijzen P. N., Aben K. K., Dekker I., Aarts L. P., Wielders P. L., van Herwaarden C. L., Bast A. Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1996 Sep;154(3 Pt 1):813–816. doi: 10.1164/ajrccm.154.3.8810624. [DOI] [PubMed] [Google Scholar]
- Dow L., Tracey M., Villar A., Coggon D., Margetts B. M., Campbell M. J., Holgate S. T. Does dietary intake of vitamins C and E influence lung function in older people? Am J Respir Crit Care Med. 1996 Nov;154(5):1401–1404. doi: 10.1164/ajrccm.154.5.8912755. [DOI] [PubMed] [Google Scholar]
- ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
- Grievink L., Smit H. A., Ocké M. C., van 't Veer P., Kromhout D. Dietary intake of antioxidant (pro)-vitamins, respiratory symptoms and pulmonary function: the MORGEN study. Thorax. 1998 Mar;53(3):166–171. doi: 10.1136/thx.53.3.166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Habib M. P., Tank L. J., Lane L. C., Garewal H. S. Effect of vitamin E on exhaled ethane in cigarette smokers. Chest. 1999 Mar;115(3):684–690. doi: 10.1378/chest.115.3.684. [DOI] [PubMed] [Google Scholar]
- Levine P. H., Hardin J. C., Scoon K. L., Krinsky N. I. Effect of corticosteroids on the production of superoxide and hydrogen peroxide and the appearance of chemiluminescence by phagocytosing polymorphonuclear leukocytes. Inflammation. 1981 Mar;5(1):19–27. doi: 10.1007/BF00910776. [DOI] [PubMed] [Google Scholar]
- Liu C. S., Wei Y. H. Age-associated alteration of blood thiol-group-related antioxidants in smokers. Environ Res. 1999 Jan;80(1):18–24. doi: 10.1006/enrs.1998.3882. [DOI] [PubMed] [Google Scholar]
- Mezzetti A., Lapenna D., Pierdomenico S. D., Calafiore A. M., Costantini F., Riario-Sforza G., Imbastaro T., Neri M., Cuccurullo F. Vitamins E, C and lipid peroxidation in plasma and arterial tissue of smokers and non-smokers. Atherosclerosis. 1995 Jan 6;112(1):91–99. doi: 10.1016/0021-9150(94)05403-6. [DOI] [PubMed] [Google Scholar]
- Miedema I., Feskens E. J., Heederik D., Kromhout D. Dietary determinants of long-term incidence of chronic nonspecific lung diseases. The Zutphen Study. Am J Epidemiol. 1993 Jul 1;138(1):37–45. doi: 10.1093/oxfordjournals.aje.a116775. [DOI] [PubMed] [Google Scholar]
- Morabia A., Menkes M. J., Comstock G. W., Tockman M. S. Serum retinol and airway obstruction. Am J Epidemiol. 1990 Jul;132(1):77–82. doi: 10.1093/oxfordjournals.aje.a115645. [DOI] [PubMed] [Google Scholar]
- Morrison D., Rahman I., Lannan S., MacNee W. Epithelial permeability, inflammation, and oxidant stress in the air spaces of smokers. Am J Respir Crit Care Med. 1999 Feb;159(2):473–479. doi: 10.1164/ajrccm.159.2.9804080. [DOI] [PubMed] [Google Scholar]
- Nakayama T., Church D. F., Pryor W. A. Quantitative analysis of the hydrogen peroxide formed in aqueous cigarette tar extracts. Free Radic Biol Med. 1989;7(1):9–15. doi: 10.1016/0891-5849(89)90094-4. [DOI] [PubMed] [Google Scholar]
- Ness A. R., Khaw K. T., Bingham S., Day N. E. Vitamin C status and respiratory function. Eur J Clin Nutr. 1996 Sep;50(9):573–579. [PubMed] [Google Scholar]
- Nowak D., Antczak A., Krol M., Pietras T., Shariati B., Bialasiewicz P., Jeczkowski K., Kula P. Increased content of hydrogen peroxide in the expired breath of cigarette smokers. Eur Respir J. 1996 Apr;9(4):652–657. doi: 10.1183/09031936.96.09040652. [DOI] [PubMed] [Google Scholar]
- Nowak D., Kasielski M., Antczak A., Pietras T., Bialasiewicz P. Increased content of thiobarbituric acid-reactive substances and hydrogen peroxide in the expired breath condensate of patients with stable chronic obstructive pulmonary disease: no significant effect of cigarette smoking. Respir Med. 1999 Jun;93(6):389–396. doi: 10.1053/rmed.1999.0574. [DOI] [PubMed] [Google Scholar]
- Pryor W. A., Stone K. Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann N Y Acad Sci. 1993 May 28;686:12–28. doi: 10.1111/j.1749-6632.1993.tb39148.x. [DOI] [PubMed] [Google Scholar]
- Rahman I., MacNee W. Oxidant/antioxidant imbalance in smokers and chronic obstructive pulmonary disease. Thorax. 1996 Apr;51(4):348–350. doi: 10.1136/thx.51.4.348. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rahman I., MacNee W. Role of oxidants/antioxidants in smoking-induced lung diseases. Free Radic Biol Med. 1996;21(5):669–681. doi: 10.1016/0891-5849(96)00155-4. [DOI] [PubMed] [Google Scholar]
- Rahman I., Morrison D., Donaldson K., MacNee W. Systemic oxidative stress in asthma, COPD, and smokers. Am J Respir Crit Care Med. 1996 Oct;154(4 Pt 1):1055–1060. doi: 10.1164/ajrccm.154.4.8887607. [DOI] [PubMed] [Google Scholar]
- Rahman I., Skwarska E., MacNee W. Attenuation of oxidant/antioxidant imbalance during treatment of exacerbations of chronic obstructive pulmonary disease. Thorax. 1997 Jun;52(6):565–568. doi: 10.1136/thx.52.6.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rautalahti M., Virtamo J., Haukka J., Heinonen O. P., Sundvall J., Albanes D., Huttunen J. K. The effect of alpha-tocopherol and beta-carotene supplementation on COPD symptoms. Am J Respir Crit Care Med. 1997 Nov;156(5):1447–1452. doi: 10.1164/ajrccm.156.5.96-11048. [DOI] [PubMed] [Google Scholar]
- Rice-Evans C., Miller N. J. Total antioxidant status in plasma and body fluids. Methods Enzymol. 1994;234:279–293. doi: 10.1016/0076-6879(94)34095-1. [DOI] [PubMed] [Google Scholar]
- Schwartz J., Weiss S. T. Dietary factors and their relation to respiratory symptoms. The Second National Health and Nutrition Examination Survey. Am J Epidemiol. 1990 Jul;132(1):67–76. doi: 10.1093/oxfordjournals.aje.a115644. [DOI] [PubMed] [Google Scholar]
- Schünemann H. J., Muti P., Freudenheim J. L., Armstrong D., Browne R., Klocke R. A., Trevisan M. Oxidative stress and lung function. Am J Epidemiol. 1997 Dec 1;146(11):939–948. doi: 10.1093/oxfordjournals.aje.a009220. [DOI] [PubMed] [Google Scholar]
- Selby C., Drost E., Lannan S., Wraith P. K., MacNee W. Neutrophil retention in the lungs of patients with chronic obstructive pulmonary disease. Am Rev Respir Dis. 1991 Jun;143(6):1359–1364. doi: 10.1164/ajrccm/143.6.1359. [DOI] [PubMed] [Google Scholar]
- Snider G. L. Chronic obstructive pulmonary disease: risk factors, pathophysiology and pathogenesis. Annu Rev Med. 1989;40:411–429. doi: 10.1146/annurev.me.40.020189.002211. [DOI] [PubMed] [Google Scholar]
- Steinberg F. M., Chait A. Antioxidant vitamin supplementation and lipid peroxidation in smokers. Am J Clin Nutr. 1998 Aug;68(2):319–327. doi: 10.1093/ajcn/68.2.319. [DOI] [PubMed] [Google Scholar]
- Yeung M. C., Buncio A. D. Leukocyte count, smoking, and lung function. Am J Med. 1984 Jan;76(1):31–37. doi: 10.1016/0002-9343(84)90741-1. [DOI] [PubMed] [Google Scholar]
- van Antwerpen V. L., Theron A. J., Richards G. A., Steenkamp K. J., van der Merwe C. A., van der Walt R., Anderson R. Vitamin E, pulmonary functions, and phagocyte-mediated oxidative stress in smokers and nonsmokers. Free Radic Biol Med. 1995 May;18(5):935–941. doi: 10.1016/0891-5849(94)00225-9. [DOI] [PubMed] [Google Scholar]
- van Lieshout E. M., Peters W. H. Age and gender dependent levels of glutathione and glutathione S-transferases in human lymphocytes. Carcinogenesis. 1998 Oct;19(10):1873–1875. doi: 10.1093/carcin/19.10.1873. [DOI] [PubMed] [Google Scholar]
